
Wait-Free Stabilizing Dining Using Regular
Registers?

Srikanth Sastry1??, Jennifer Welch2? ? ?, and Josef Widder3 †

1 CSAIL, MIT
Cambridge, MA - 02139, USA

2 Texas A&M University
College Station, TX - 77843, USA

3 Technische Universität Wien
Vienna, Austria

Abstract. Dining philosophers is a scheduling paradigm that deter-
mines when processes in a distributed system should execute certain
sections of their code so that processes do not execute ‘conflicting’ code
sections concurrently, for some application-dependent notion of a ‘con-
flict’. Designing a stabilizing dining algorithm for shared-memory sys-
tems subject to process crashes presents an interesting challenge: classic
stabilization relies on all processes continuing to execute actions forever,
an assumption which is violated when crash failures are considered. We
present a dining algorithm that is both wait-free (tolerates any num-
ber of crashes) and is pseudo-stabilizing. Our algorithm works in an
asynchronous system in which processes communicate via shared regu-
lar registers and have access to the eventually perfect failure detector
♦P. Furthermore, with a stronger failure detector, the solution becomes
wait-free and self-stabilizing. To our knowledge, this is the first such
algorithm. Prior results show that ♦P is necessary for wait-freedom.

1 Introduction

In shared-memory distributed systems, the code for a distributed application
at each process is a sequence of actions, certain sections of which — called
critical sections — are designated as needing to be executed indivisibly with
respect to the critical sections of application modules at certain other processes.
Actions at different processes might conflict, for instance, because they access a
shared resource or because the relative order of their execution results in a race
condition. Synchronizing such actions of distributed applications, that need to

? We would like to thank the reviewers for their suggestions in improving the paper.
?? This work is supported in part by NSF Award Numbers CCF-0726514, CCF-

0937274, and CNS-1035199, and AFOSR Award Number FA9550-08-1-0159. This
work is also partially supported by Center for Science of Information (CSoI), an
NSF Science and Technology Center, under grant agreement CCF-0939370.

? ? ? Supported in part by NSF grant 0964696.
† Supported in part by the Austrian National Research Network S11403-N23 (RiSE)

of the Austrian Science Fund (FWF), and by the Vienna Science and Technology
Fund (WWTF) grant PROSEED.

occur without interference, is often delegated to scheduler that is implemented
as a solution to the dining philosophers problem (or dining, for short).

Dining is a scheduling paradigm in which critical-section actions at each
process may be in conflict with a static subset of processes in the system, and
a solution to the dining philosophers problem ensures that whenever a process
is executing its critical-section actions, no other conflicting process is executing
its respective critical-section actions.

Solutions to dining are well understood in ‘fault-free’ systems, in which all
the components behave according to their respective specification. However, in
the presence of faults — deviations of any component from its specification —
designing dining algorithms becomes challenging. In this paper, we focus on
solving dining in the presence of two distinct fault classes: transient faults and
crash faults. A transient fault occurs when the state of the system is corrupted
to an arbitrary state, and a crash fault occurs when a process ceases execution
without warning and never recovers.

Often, recovery from transient faults is achieved through stabilization [13],
which is a property that guarantees that from any arbitrary state, the system
is guaranteed to converge to a ‘safe’ state and operate henceforth in accordance
with its specification. A classic assumption for correctness in stabilizing systems
is that all processes continue executing actions to recover from an arbitrary state.
However, a crashed process ceases executing actions. This makes the intersection
of the two fault classes an interesting avenue for research.

Contribution. While existing solutions to dining are either stabilizing [1,
2, 5, 23] or wait-free (tolerate an arbitrary number of crashes) [28, 30, 9], to our
knowledge, there are none that are both. In this paper, we propose a distributed
dining algorithm that is pseudo-stabilizing and wait-free. The algorithm assumes
the existence of multi-reader single-writer regular registers and the eventually
perfect failure detector ♦P. We remark that the above assumptions are modest
or even necessary: wait-free multi-reader single-writer regular register can be
constructed from wait-free dual-reader single-writer safe bits [17], and ♦P is
necessary for wait-free dining [29] in asynchronous systems. We see that if the
algorithm accesses the perfect failure detector, then it becomes wait-free and
self-stabilizing.

Organization. Background and related work is presented in Sect. 2. Section
3 describes the system model. Section 4 specifies two problems: mutual exclusion
and dining philosophers. Section 5 describes a wait-free pseudo-stabilizing mu-
tual exclusion algorithm, which is then used in the wait-free pseudo-stabilizing
dining algorithm described in Sect. 6. We conclude in Sect. 7.

2 Background and Related Work

Designing dining algorithms that are stabilizing or crash-tolerant, especially
wait-free, or both, has been an active area of research.

Crash tolerant and stabilizing dining. There has been some prior in-
vestigations on constructing stabilizing dining algorithms that tolerate process
crashes. For instance, [24] provides a stabilizing dining algorithm that tolerates
(malicious) crashes, and in [26], the stabilizing dining algorithm tolerates byzan-
tine processes. However, in these algorithms, some correct processes could stall

even if one process crashes. In contrast, we focus on the stronger property of
wait-freedom which guarantees that all correct processes continue taking steps
despite arbitrary process crashes.

Self-stabilizing dining. There has been a significant body of work [23, 1, 5,
25] which investigates self-stabilizing dining; however, these algorithms are not
wait-free. The algorithm presented in [2], in addition to being self-stabilizing,
ensures k-fairness4. However, the aforementioned algorithms assume that the
low-level shared-memory registers in the system satisfy read/write atomicity. In
contrast, we assume that we have regular registers, which are weaker than atomic
registers. Furthermore, in all of the above algorithms, if some process crashes,
other processes are not guaranteed to continue taking actions; in other words,
these implementations are not fault-tolerant.

Crash-tolerant dining. There has been a lot of work in designing crash-
tolerant dining algorithms. However, in asynchronous systems, it is impossible
to design dining algorithms in which neighbors and neighbors’ neighbors of a
crashed process do not stall [7]; in other words, asynchronous systems cannot
guarantee a crash locality of less than 2. Achieving a smaller crash locality
requires some recourse to crash detection. Subsequently, [27] showed that with
access to sufficient crash detection ability, the crash locality of dining algorithms
can be reduced to 1. The results in [27] employed the eventually perfect failure
detector (♦P)5 [6].

Later ♦P is shown in [28, 30] to be sufficient to achieve wait-freedom at
the expense of a weaker exclusion guarantee: ♦P-based dining algorithms may
schedule conflicting actions concurrently, but only finitely many times; that is,
exclusion is only eventual. The results in [29] demonstrate the necessity of the
above trade-off.

Failure detectors. Intuitively, failure detectors [6] are oracles that may
provide hints about process crashes. Since, our goal is to implement wait-free
and stabilizing schedulers, the failure detectors that we employ must also be
stabilizing. Self-stabilizing implementations of failure detectors have been an area
of active research. In message passing systems, one of the first self-stabilizing
implementations are for the perfect failure detector proposed in [21, 20], but
only when at most one process crashes. Later, self-stabilizing algorithms for
failure detectors in the presence of multiple process crashes was proposed in [3]
for systems that have local clocks and have bounds on the relative messages
delays. Subsequently, [18] proposed time-free self-stabilizing implementations of
failure detectors in a similar system as [3], but where processes do not have

4 A k-fair scheduler guarantees the following. For any process i, between any two
consecutive accesses to its respective critical section by i, no other process enters its
own respective critical section more than k times.

5 Briefly, the eventually perfect failure detector, or ♦P for short, may provide arbitrary
information to processes for some arbitrary, but finite, duration; however, eventually
(after some potentially unknown time), it provides perfect information about process
crashes.

local clocks. More recently, in [8], Delporte-Gallet et al. propose a self-stabilizing
implementation of the Ω failure detector6.

For shared memory systems, Dolev et al. [15] propose a self-stabilizing imple-
mentation of the Ω failure detector in systems with unknown bounds on relative
process speeds. In [16], Fischer et al. implement and use a variant Ω called ‘Ω?’,
which eventually determines whether not there is a leader, to solve self-stabilizing
leader election in anonymous systems.

3 System Model

The system consists of a set of processes and a set of shared single-writer multi-
reader read/write regular [19] registers.

Processes. The system contains the set Π of n processes where each process
is a state machine. Each process has a unique incorruptible ID from the set
{0, . . . , n − 1} and is known to all the processes in the system. Since a process
ID uniquely determines a process, in the remainder of this paper, we refer to a
process and its ID interchangeably.

States and private variables. The state of the system (or, system state) is
determined by the state of each process and the state of each shared variable in
the system. In turn, the state of each process is determined by the set of private
variables at that process. A private variable at a process i accessible only to
process i and no other process may read or write to that variable. The states of
shared variables are discussed later.

Steps. The read and write operations of shared variables and the state
changes of processes are modeled by steps, which are of four types: invocation,
response, transition, and crash. The invocation and response steps are discussed
when describing shared variables. Transition steps are discussed when describing
actions. Crash steps are discussed when describing faults.

Shared variables. The system contains a set of shared variables that are
regular single-writer multi-reader registers. Each shared variable is a state ma-
chine that interacts with the processes through read and write operations. Each
operation consists of two steps: invocation by the process and response by the
shared variable. Each shared variable may be read by any processes in the system
and is owned by some unique fixed process. Only the owner of a shared variable
may write to it.

Actions. The state change at each process is determined by a set of ac-
tions. Actions are guarded commands [12] which are of the form “{guard} →
command”; guard is a predicate on the state of the process, and command is
a representation of at most one shared memory operation followed by the new
state of the process.

Precisely, each command is an ordered tuple that consists of either a read
or write operation and a transition step, or just a transition step. Recall that a
read (or write) operation consists of an invocation step followed by a response
step. In a transition step, a process may change its local state (by modifying

6 Briefly, the Ω failure detector outputs a process ID at each process infinitely of-
ten. Eventually, after some potentially unknown time, and forever thereafter, Ω is
guaranteed to output the ID of some unique correct processes.

the value of private variables) based on the current state and value returned by
shared-memory operation in that action (if applicable).

Given an action A ≡ {guard} → command at a process i, in every state s
of the system in which guard is true, the action a is said to be enabled in s
at i. The algorithm that a process follows is described as a set of actions called
program actions.

Tasks are a partitioning of program actions at each process; a task t is simply
a set of program actions at a process. Each program action belongs to exactly
one task. The notion of tasks is useful in describing fair executions.

Faults. Processes are prone to crash faults. When a crash fault occurs at
process i, the process ceases taking steps without warning and never recovers.
In effect, when a crash fault occurs at a process i, it disables all the program
actions at i. A crash fault at each process i is modeled as an explicit action
that consists of a single crash step, but is assumed to not be a program action,
and therefore, it is not in any task. The crash fault action for each process i is
continuously enabled until it is executed; however, the action (for each process
i) occurs at most once. It is admissible for a process to never crash; that is, it is
admissible for a crash fault action to never occur.

Eventually perfect failure detector. We assume that the system is aug-
mented with a self-stabilizing implementation of the eventually perfect failure de-
tector, or ♦P, for short. Informally, ♦P provides information about crash faults
to all the processes in the system in the form of a suspect list which contains
a set of processes; eventually, ♦P never suspects correct processes and always
suspects crashed processes. More precisely, we assume that each process i has
a private variable ♦Pi that contains a set of process IDs. ♦P is specified by a
set of actions, one action ai for each process i, where ai writes a value to ♦Pi

continually such that, eventually and permanently, ♦Pi contains exactly the set
of IDs of crashed processes.

Although we do not provide an explicit self-stabilizing implementation of
♦P here, we remark that there are many existing self-stabilizing ♦P and Ω im-
plementations (discussed in Sect. 2) that may be modified appropriately and
employed here. The choice of the implementation depends on the partial syn-
chrony satisfied by the underlying distributed system and is beyond the scope
of this paper.

Executions. An execution describes the state evolution of a system as a
(potentially infinite) sequence α = S0, a1, S1, a2, . . . of alternating system states
and steps such that the following properties are satisfied. An execution may start
from any system state.

1. For each process i, the subsequence αi of α that consists of all the steps at
process i can be partitioned into a sequence of actions A1, A2, A3, Let
si.0 be the state of process i in S0. There exists a sequence si.1, si.2, . . . of
states of process i such that for every positive natural number x, action Ax

is enabled in state si.x−1 and applying Ax causes i to transition to state si.x.
2. In α, for each process i, no step at i follows a crash step at i.
3. For every shared register r, the sequence of invocation and response steps in
α for r satisfies the regularity property [19]. That is, every read operation
returns either the value written by latest preceding write or the value being
written by an overlapping write (if applicable).

4. For each correct process i, the sequence of values of ♦Pi during the execution
satisfies the properties of ♦P: eventually and permanently, ♦Pi contains
exactly the set of IDs of faulty processes.

An execution α is said to be a fair execution if it satisfies the following
properties. (1) If α is a finite execution, then no program action is enabled in
the final state of the system after executing α. (2) If α is an infinite execution,
then for each task t, either some enabled program action in t occurs infinitely
often in α, or in infinitely many states of α, no program action in t is enabled.
Note that crash actions are not in any task and, therefore, need not occur ‘fairly’.

In any execution α, the set of processes at which a crash fault occurs is said
to be faulty in α, and all the other processes are said to be correct in α. Each
process is said to be live until it crashes.

4 Dining and Mutual Exclusion

In this section, we describe the two problems which are the primary focus of this
article: dining philosophers and mutual exclusion.

Dining. The dining philosophers problem [22] is a scheduling problem that
is represented by an undirected graph G = (Π,E), called a conflict graph, where
the set Π of processes (called diners) denotes the set of vertices of the conflict
graph. The neighbors of each process i in G are denoted N(i). Each process
is assumed to know the conflict graph G. The state space of each process is
partitioned into four sets: thinking, hungry, eating, and exiting. A solution to
dining philosophers determines when a diner can transition from a hungry state
to an eating state, and from an exiting state to a thinking state. In order to
specify the dining philosopher’s problem, we assume that the diners satisfy a set
of ‘well-formedness’ properties defined next.

A diner is said to be well-formed iff (1) a diner becomes hungry only when
thinking, but may remain thinking forever, (2) a diner remains hungry until it
starts eating, and (3) a correct eating diner eventually exits.

An execution of the system which satisfies the well-formedness conditions is
said to be a well-formed execution.

A solution to dining philosophers is an algorithmA that satisfies the following
properties. (1) There exists a non-empty set of states, called start states in which
all the diners are thinking. (2) Furthermore, in every fair well-formed execution
that starts from a start state, the following properties are satisfied.

(a) Mutual exclusion: For each diner i, while i is live and eating, no live process
in N(i) is eating.

(b) Eventual Exit: If a correct diner is exiting, then eventually that diner is
thinking.

(c) Fairness: If some correct diner is hungry, then eventually that diner is eating.

Fix such an algorithm A. Let Es be the set of all fair well-formed executions
that start from some start state. Let Qsafe be the set of states that occur in any
execution in Es. The set Qsafe is said to be the set of safe states of A.

A dining philosophers algorithm A is said to be pseudo-stabilizing [4] and
wait-free if it guarantees that for any fair well-formed execution α (starting from

an arbitrary state), there exists a suffix of α in which mutual exclusion, eventual
exit, and fairness are satisfied regardless of the number of process crashes. A
is said to be self-stabilizing [11] and wait-free, if, in addition to being pseudo-
stabilizing and wait-free, it guarantees that every well-formed execution α that
starts from a safe state is the suffix of some execution in Es.

Mutual exclusion. Mutual exclusion [10] is a degenerate case of the dining
philosophers problem in which the conflict graph is a complete graph. In the
mutual exclusion parlance, a thinking state is called a remainder state, a hungry
state is called a trying state, an eating state is called a critical (section) state,
and an exiting state is called an exiting state.

5 Wait-Free Pseudo-Stabilizing Mutual Exclusion

Our proposed wait-free pseudo-stabilizing dining algorithm is constructed in
three parts. In the first part, we construct a wait-free pseudo-stabilizing ring of
processes. In the second part, we deploy a modified version of Dijkstra’s mutual-
exclusion algorithm on the ring from part one. Finally, in the third part, we
construct a wait-free pseudo-stabilizing dining algorithm using a collection of
overlapping mutual exclusion instances. This section describes the first two parts

Wait-free pseudo-stabilizing ring. We use the eventually perfect failure
detector ♦P to construct a wait-free pseudo-stabilizing ring over an arbitrary
set Πr ⊆ Π of processes. The algorithm is straightforward. Each process i ∈ Πr

(locally) determines its predecessor j in the ring as follows. The predecessor
of i is a process j such that j is the largest ID smaller than i modulo n such
that j is in Πr and not suspected by ♦P. Precisely, the predecessor of i is
determined by the function pred as follows: pred(i) = j, where j ∈ Πr \♦Pi and
∀k ∈ N+ : 0 < k < i− j (mod n) : i− k (mod n) /∈ Πr \ ♦Pi.

The correctness of the above algorithm is also straightforward. Eventually,
♦P suspects exactly the crashed processes, and provides the same output to all
the processes. Therefore, eventually all the live processes in Πr have a consistent
and accurate view of the processes that are live in Πr, and they converge to a
unique ring encompassing all the live processes in Πr.

Wait-free pseudo-stabilizing mutual exclusion. We construct a wait-
free pseudo-stabilizing mutual exclusion algorithm for an arbitrary set Πr ⊆ Π
of processes as follows. The algorithm in [14] modifies Dijkstra’s self-stabilizing
mutual exclusion algorithm [11] for rings with read/write regular registers. Note
that Dijkstra’s algorithm (in [14] and [11]) requires some process be the ‘distin-
guished’ process whose actions are different from other processes. In our case, we
require this ‘distinguished’ process to be correct, and we require no other process
to be ‘distinguished’. Each process determines whether or not it is distinguished
by computing the following local function leader : Πr → {true, false}. For each
process i, leader(i) is true iff i = min(Πr \ ♦Pi).

Eventually, leader(i) is true only for the process i with the lowest ID among
the correct processes in Πl, and for all other processes i′, leader(i′) is false.
Thus, the function leader eventually determines a unique distinguished process
in Πr. Now we simply deploy the algorithm from [14] in the previously described
wait-free pseudo-stabilizing ring over Πr with multi-reader single-writer regular

registers with the modification that a process i behaves as the distinguished
process when leader(i) is true, and it behaves as a non-distinguished process
when leader(i) is false. Thus, we obtain a wait-free pseudo-stabilizing mutual
exclusion algorithm over the set Πr of processes.

The correctness and stability of the algorithm is straightforward and has
been omitted from this version of the paper.

We use multiple instances of the above algorithm in solving dining. For disam-
biguation, we adopt the following convention: an instance of the above algorithm
over a set Πx of processes is denoted MX x.

Note thatMX r interacts with clients at each process in Πr. We assume that
for each process i ∈ Πr,MX r contains a variable mutexi. The variable mutexi,
at each process i, can have one of four values: remainder, trying, critical, and
exiting. If mutexi is remainder, then process i is in its remainder section; if
mutexi is trying, then i is trying ; if mutexi is critical, then i is in its critical
section; and if mutexi is exiting, then i has finished accessing its critical section
and exiting to the remainder section.

We denote the set of safe states for this algorithm as mutex safe states7. We
will use this notion of mutex safe states when arguing for the correctness of the
dining algorithm that is described next.

6 Wait-Free Pseudo-Stabilizing Dining

In this section, we use multiple instances of the mutual exclusion algorithmMX
from Sect. 5 to construct a pseudo-stabilizing wait-free dining algorithm. The
algorithm is inspired by the HRA algorithm from [22].

6.1 Algorithm Description

Let G = (Π,E) be the conflict graph. Let R be the set of maximal cliques in G.
Let |R| be k. For convenience, let R = {Rx|x ∈ N+ ∧ 0 < x ≤ k}. We assume
a total order on the cliques such that Rx is ordered before Ry iff x < y. For
each clique Rx, let Πx denote the set of processes (diners) in Rx. Each clique
Rx ∈ R represents a subset of resources to be accessed in isolation by diners
in Πx. Consequently, for each clique Rx, we associate an instance of the wait-
free pseudo-stabilizing mutual-exclusion algorithm MX x, and the participants
in MX x constitute the set Πx.

For each diner i, let Ci denote the set of all cliques Rx such that i ∈ Πx;
that is, diner i contends for exclusive access to the all the resources associated
with cliques in Ci.

Variables. For disambiguation, the variable mutexi in the mutual exclusion
instance MX x will be referred to as MX x.mutexi. Each diner has access to
the private variables MX x.mutexi, where Rx ∈ Ci. Finally, we introduce a
new private variable diningStatei for each diner i in the system. The variable
may contain one of the four values: thinking, hungry, eating, and exiting. If

7 Note that we do not explicitly specify the set of safe states here; it is specified and
described in [14]. Here we merely assert its existence, which is sufficient for our
purposes.

diningStatei is thinking, then i is thinking, if diningStatei is hungry, then i is
hungry, and so on.

Three functions. For each diner i, apart from the actions of algorithm
MX x for each Rx ∈ Ci, we introduce three additional actions denoted D.1–D.3
which constitute a new task. Before describing the actions, we introduce three
functions csPrefix, currentMutex, and badSuffix which are used in specifying
the guards for the three actions.

Sequence Ci. Let Ci denote the sequence over all the cliques from Ci such
that a clique Rx precedes a clique Ry in Ci iff x < y.

Functions csPrefix and currentMutex. The function csPrefix(Ci) returns
the longest prefix of Ci such that, for each Rx in csPrefix(Ci),MX x.mutexi =
critical (i is in the critical section of MX x). The function currentMutex(Ci)
returns the first clique following csPrefix(Ci) in Ci, if such a clique exists; oth-
erwise, it returns ⊥.

Function badSuffix. The function badSuffix(Ci) is true iff there exists
some Rx in the suffix of Ci following currentMutex(Ci) such thatMX x.mutexi
is either trying or critical (i is either trying or in the critical section of MX x).

An informal motivation for the foregoing functions follows. Upon becoming
hungry, each diner i starts trying in MX c = currentMutex(Ci), and when
i enters the critical section of MX c, MX c becomes a part of csPrefix(Ci).
Subsequently, i starts trying inMX c′ = currentMutex(Ci) which followsMX c

in Ci, and so on, until i is in the critical section of all MX instances in Ci. In
the absence of faults, while a diner i is hungry, i is in the critical section of all
MX instances in csPrefix(Ci) and in the remainder or exiting section of all
theMX instances in the suffix following currentMutex(Ci) in Ci. However, due
to a transient fault, it is possible for a diner i to be in a state in which i is
either trying or in the critical section of some MX instance in the suffix; when
this occurs, we say that the suffix is “bad”. This is captured by the predicate
badSuffix(Ci).

Actions. We introduce three new actions (that constitute a single new task)
for each process (diner) i in our proposed wait-free self-stabilizing dining algo-
rithm. The pseudocode is given in Fig. 1.1 and described next.

The first action, Action D.1, is enabled when the diner (say) i is either think-
ing or exiting, or badSuffix(Ci) is true. When Action D.1 is executed, it sets
each mutex variable that is not remainder to exiting and sets diningStatei to
thinking. That is, diner i is either in the remainder section or in the exit section
in all the mutual-exclusion instances. Note that this transition need not satisfy
the well-formedness condition of mutual-exclusion clients. For stabilization, it
is important to ensure that such well-formedness violations occur only finitely
many times in any execution.

The second action, Action D.2, is enabled when the diner i is hungry, i
is not in the critical section of all the associated mutual-exclusion instances
(csPrefix(Ci) 6= Ci), and badSuffix(Ci) is false. When Action D.2 is executed,
i starts trying in the mutual-exclusion instance of currentMutex(Ci).

The third action, Action D.3, is enabled when the diner i is hungry, and i is
in the critical section of all the associated MX instances (csPrefix(Ci) = Ci).
When Action D.3 is executed, diner i starts eating.

Note that the client of the dining service at each process is responsible for
transitioning from thinking to hungry and from eating to thinking.

private variable diningStatei
foreach Rx ∈ Ci:

variable MX x.mutexi Variable mutexi in instance MX x described in Sect. 5
/* Note that the client at process i sets diningStatei to “hungry” upon becoming hungry
and to “exiting” upon finishing eating. Client actions are not shown.
Also, the client is assumed to be “well-formed”. */
The three actions below constitute a single task

1 : {(diningStatei = thinking) ∨ (diningStatei = exiting)
∨(badSuffix(Ci))} −→ Action D.1

2 : foreach Rx ∈ Ci:
3 : if (MX x.mutexi 6= remainder)
4 : MX x.mutexi ← exiting // If eating, then exit; if hungry, then abort.
5 : diningStatei ← thinking // Exit in all mutex instances, and start thinking

6 : {(diningStatei = hungry) ∧ (csPrefix(Ci) 6= Ci)
∧(¬badSuffix(Ci))} −→ Action D.2

7 : Rx ← currentMutex(Ci) // If hungry and in the critical section of a prefix of
8 : if (MX x.mutexi = remainder) // cliques, then start trying in the mutex
9 : MX x.mutexi ← trying // associated with the next clique

10 : {(diningStatei = hungry) ∧ (csPrefix(Ci) = Ci)} −→ Action D.3
11 : diningStatei ← eating // Transit from hungry to eating

Figure 1.1. Self-Stabilizing Wait-Free Dining. Action system at process i.

6.2 Pseudo-Stabilization

In order to establish the pseudo-stabilization property, we have to define a set
of safe states for each process in the system. The system is said to be in a safe
state iff every mutual-exclusion instance is in a mutex safe state, and every live
diner is in a “diner-safe state”, as defined next.

A diner i is said to be in a diner-safe state if (1) badSuffix(Ci) is false, (2) if i
is eating, then everyMX instance at i is in its critical section, and (3) if i is think-
ing, then everyMX instance at i is either in its remainder section or is exiting.
Precisely, ¬badSuffix(Ci)∧((diningStatei = eating)→ (csPrefix(Ci) = Ci))∧
((diningStatei = thinking) → (∀Rx ∈ Ci :: (MX x.mutexi = remainder) ∨
(MX x.mutexi = exiting))) is true. The system is said to be in a diner-safe
state iff each live diner is in a diner-safe state.

Closure. We prove closure with respect to diner states in Lemma 4 using
three helper lemmas. Let s be an arbitrary state of the system executing the
action system from Fig. 1.1, where each mutual-exclusion instance is an instance
of MX .

Lemma 1. For any process i, if s.badSuffix(Ci) is false, then for each suc-
cessor s′ of s, s′.badSuffix(Ci) is false.

Lemma 2. For any process i, if (diningStatei = eating) → (csPrefix(Ci) =
Ci) is true in state s, then for any successor s′ of s, (diningStatei = eating)→
(csPrefix(Ci) = Ci)) remains true.

Lemma 3. For any process i, if (diningStatei = thinking) → (∀Rx ∈ Ci ::
(MX x.mutexi = remainder) ∨ (MX x.mutexi = exiting)) is true in state s,
then for any successor s′ of s, (diningStatei = thinking) → (∀Rx ∈ Ci ::
(MX x.mutexi = remainder) ∨ (MX x.mutexi = exiting)) remains true.

The proofs of the above three lemmas are straightforward. They consider each
possible successor s′ of s by considering each enabled action. By case analysis
for each such action, we confirm that the lemmas are true.

Closure, with respect to diner-safe states, follows from Lemmas 1, 2, and 3.
We have the following lemma.

Lemma 4. Every fair execution of the action system from Fig. 1.1, where each
mutual-exclusion instance is an instance of MX , satisfies closure (with respect
to diner-safe states): if the system eventually reaches a diner-safe state s, then
the suffix of the execution following s contains only diner-safe states.

Convergence. We prove convergence, with respect to diner safe states, in
three parts. First, we prove that if the system is in a state where for some correct
diner i, badSuffix(Ci) is true, then eventually, badSuffix(Ci) becomes false.
Next, we prove that if the system is in a state where, for some diner i, i is eating,
but csPrefix(Ci) 6= Ci, then eventually we reach a state where, if i is eating,
then csPrefix(Ci) = Ci. Finally, we show that the following. If the system is in
a state where, if some diner i is thinking, but in some MX instance i is neither
exiting nor in the remainder section, then we eventually reach a state in which
the following is true. If i is thinking, then in allMX instances (for i), i is either
exiting or in the remainder section.

For the following lemmas, fix α to be an arbitrary fair execution of the action
system from Fig. 1.1, where each mutual-exclusion instance is an instance of
MX . For any given pair of states s and s′ in the system-state sequence associated
α, any if s′ occurs after s, then s′ is said to be a descendant of s.

Lemma 5. In α, for each correct diner i, if s.badSuffix(Ci) is true for some
state s, then there exists a descendant s′ of s such that s′.badSuffix(Ci) is false.

Proof sketch. Note that Action D.1 at i is enabled in state s and remains enabled
until executed. Upon executing Action D.1 at i, badSuffix(Ci) becomes false.

Lemma 6. In α, for each correct diner i, if the system is in a state s where
(diningStatei = eating) → (csPrefix(Ci) = Ci) is false, then, there exists a
descendant s′ of s in α, such that (diningStatei = eating) → (csPrefix(Ci) =
Ci) is true, in s′.

Proof sketch. Note that i eats for finite durations in α. Since i is eating in state
s, there exists a descendant s′ of s in which i is not eating, and (diningStatei =
eating)→ (csPrefix(Ci) = Ci) is true, in s′. ut

Lemma 7. In α, for each correct diner i, if the system is in a state s where
(diningStatei = thinking) → (∀Rx ∈ Ci :: (MX x.mutexi = remainder) ∨
(MX x.mutexi = exiting)) is false, then there exists a descendant s′ of s in
α, such that (diningStatei = thinking) → (∀Rx ∈ Ci :: (MX x.mutexi =
remainder) ∨ (MX x.mutexi = exiting)) is true in s′.

Proof sketch. If i becomes hungry, then the lemma is satisfied. Otherwise, note
that Action D.1 at i is enabled in state s and remains enabled until executed.
Upon executing Action D.1 at i, we see that for each Rx in Ci Action D.1 sets
MX x.mutexi to either remainder or exiting. ut

Lemma 8. The action system from Fig. 1.1, where each mutual-exclusion in-
stance comprises an MX instance, satisfies convergence (with respect to diner-
safe states): from any arbitrary state, upon executing enabled program actions
from Fig. 1.1 and all the MX instances, the system eventually reaches a diner-
safe state.

The proof follows from Lemmas 5, 6, and 7.
Thus, we have shown pseudo-stabilization with respect to diner-safe states.

In order to complete the proof for pseudo-stabilization, we have to prove that the
action system in Fig. 1.1 in eventually well-formed. Note that Action D.3 does
not change the value of mutex variables, and Action D.2 changes a mutex vari-
able to trying from remainder, which satisfies mutual exclusion well-formedness
conditions. However, Action D.1 could set the mutex variables to trying from
exiting and violate the well-formedness condition. Therefore, it remains to show
that Action D.1 violates the well-formedness conditions only finitely many times.

Lemma 9. In any fair execution of the action system from Fig. 1.1, where each
mutual-exclusion instance comprises an MX instance, at each correct process
i, only finitely many occurrences of Action D.1 violate mutual exclusion well-
formedness conditions.

Proof sketch. From the pseudocode, we see that Action D.1 violates mutual
exclusion well-formedness conditions if line 4 is executed at a correct diner i
whenMX x.mutexi is trying for some rx ∈ Ci. From Lemmas 8 and 4, we know
that in any fair execution, eventually forever badSuffix(Ci) is false. Therefore,
eventually forever, when i executes Action D.1 diningStatei is either thinking
or exiting. However, from Lemmas 3 and 7, we know that when diningStatei
is thinking, MX x.mutexi is not trying. Finally, if i executes Action D.1 when
diningStatei is exiting, then recall that while i was eating (just prior to exiting)
csPrefix(Ci) is true. Consequently, when diningStatei is exiting, csPrefix(Ci)
is true; that is, MX x.mutexi is not trying. Therefore, at each correct process
i, only finitely many occurrences of Action D.1 violates mutual exclusion well-
formedness conditions. ut

Therefore, from Lemmas 4, 8, and 9, we establish pseudo-stabilization.

6.3 Correctness

We demonstrate safety and progress starting from a safe state after ♦P stops
falsely suspecting correct processes. The safety condition for wait-free dining is

that no two neighboring diners are live and eating concurrently. The progress
condition is that every correct hungry diner eventually eats.

Lemma 10. In any fair execution starting from a safe state, the action system
from Fig. 1.1, where each mutual-exclusion instance comprises an MX instance
satisfies safety: no two neighboring diners are live and eating concurrently.

Proof sketch. Let α be a fair execution starting from a safe state. Let α′ be
a suffix of α in which ♦P does not suspect live processes. Let i and j be two
live neighbors in some safe state s in α′ in which i is eating. Since i and j are
neighbors there exists clique Ry such that Ry ∈ Ci ∩ Cj . Since i is eating, we
know that MX y.mutexi = critical in s. From the mutual exclusion property,
we know that MX y.mutexj 6= critical in s. In other words, csPrefix(Cj) 6= Cj
in s. Therefore, j is not eating concurrently with i. ut

Lemma 11. In any fair well-formed execution starting from a safe state, the
action system from Fig. 1.1, where each mutual-exclusion instance comprises an
MX instance, satisfies progress: every correct hungry diner eventually eats.

Proof sketch. For contradiction, we assume that in some fair well-formed execu-
tion α of the system starting from a safe state, some hungry correct diner never
eats. If i is such a diner, then i must be trying for ever in some MX instance
Since MX x is wait-free, this implies that some correct neighbor j of i is in the
critical section of MX x forever. From Fig. 1.1, this means that for some other
clique Ry, y > x, j must be trying in MX y forever. Consequently, j is also
hungry forever. By the total order in which processes start trying in the MX
instances, x cannot be in the critical section of MX y. Therefore, some other
process k must be in the critical section ofMX y forever, and consequently, that
process k must be trying forever in some MX z, where z > y, (and therefore, k
must be hungry forever), and so on. Since there are only finitely many process

and finitely many MX instances, there must exist some process î that is (a)
hungry forever, (b) in the critical section of some MX ẑ, and (c) not trying in
anyMX z′ , where z′ > ẑ. However, from Fig. 1.1, we see that this is impossible.
Thus, we have a contradiction. ut

From Lemmas 10 and 11, we establish correctness.

Theorem 1. The action system in Fig. 1.1, where each mutual-exclusion in-
stance is an MX instance, solves wait-free pseudo-stabilizing dining.

7 Discussion

Wait-free self-stabilizing regular registers. Our algorithm assumes that
the system contains wait-free self-stabilizing regular registers. We remark that
existing results from [17] may be used to construct wait-free self-stabilizing regu-
lar registers from wait-free self-stabilizing safe registers. Although results in [17]
construct atomic registers from regular registers, this construction is expensive
and uses unbounded counters.

Achieving self-stabilization. Our proposed algorithm is wait-free and
pseudo-stabilizing, and not self-stabilizing, because starting from a safe state,

if ♦P falsely suspects a correct process, it could result in the system transition-
ing to an unsafe state. Since ♦P eventually ceases such false suspicions, we are
guaranteed pseudo-stabilization. If we view a false suspicion by ♦P as a transient
fault in the system, then we see that our algorithm is, in fact, self-stabilizing as
well. Alternatively, if we replace ♦P with the perfect failure detector P [6] which
never suspects live processes and eventually and permanently suspects crashed
processes, our algorithm becomes self-stabilizing (in addition to being wait-free).

On assuming ♦P. Recall that wait-free dining is unsolvable in asynchronous
systems. Consequently, we resort to using ♦P to achieve wait-freedom. In fact,
♦P is the weakest failure detector to solve wait-free dining under eventual exclu-
sion [29]. Therefore, assuming ♦P is necessary to solve wait-free self-stabilizing
dining in any (partially synchronous) shared-memory system.

Future work. There are several ways in which our result can be extended.
For instance, if we can implement self-stabilizing ♦P in a partially synchronous
system with safe registers, then we can adapt our algorithm to solve wait-free
self-stabilizing dining with safe registers instead of regular registers. Another
avenue for improvement is in fairness. Our algorithm is weakly fair — every
hungry diner eventually eats, but could be overtaken unboundedly many times
by hungry neighbors. However, we know that ♦P is sufficient to solve eventually
bounded-fair dining [30]. It remains to be seen if we can solve wait-free stabilizing
dining with bounded fairness using ♦P.

References

1. Antonoiu, G., Srimani, P.K.: Mutual exclusion between neighboring nodes in an
arbitrary system graph tree that stabilizes using read/write atomicity. In: Pro-
ceedings of the 5th International Euro-Par Conference on Parallel Processing.
vol. 1685, pp. 823–830 (1999)

2. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local
mutual exclusion and daemon refinement. Chicago Journal of Theortical Computer
Science 2002(1) (2002)

3. Beauquier, J., Kekkonen-Moneta, S.: Fault-tolerance and self-stabilization: impos-
sibility results and solutions using self-stabilizing failure detectors. International
Journal of Systems Science 28(11), 1177–1187 (1997)

4. Burns, J.E., Gouda, M.G., Miller, R.E.: Stabilization and pseudo-stabilization.
Distributed Computing 7(1), 35–42 (1993)

5. Cantarell, S., Datta, A.K., Petit, F.: Self-stabilizing atomicity refinement allowing
neighborhood concurrency. In: Proceedings of the 6th International Symposium
Self-Stabilizing Systems. pp. 102–112 (2003)

6. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

7. Choy, M., Singh, A.K.: Localizing failures in distributed synchronization. IEEE
Transactions on Parallel and Distributed Systems 7(7), 705–716 (1996)

8. Delporte-Gallet, C., Devismes, S., Fauconnier, H.: Robust stabilizing leader elec-
tion. In: Proceedings of the 9th International Symposium on Stabilization, Safety,
and Security of Distributed Systems. pp. 219–233 (2007)

9. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kouznetsov, P.: Mutual ex-
clusion in asynchronous systems with failure detectors. Journal of Parallel and
Distributed Computing 65(4), 492–505 (2005)

10. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
munications of the ACM 8(9), 569 (1965)

11. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-
cations of the ACM 17(11), 643–644 (1974)

12. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

13. Dolev, S.: Self-Stabilization. MIT Press (2000)
14. Dolev, S., Herman, T.: Dijkstra’s self-stabilizing algorithm in unsupportive envi-

ronments. In: Workshop on Self-Stabilizing Systems. pp. 67–81 (2001)
15. Dolev, S., Kat, R., Schiller, E.: When consensus meets self-stabilization. In: Pro-

ceedings of the tenth International Conference on the Principles of Distributed
Systems. pp. 45–63 (2006)

16. Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-state
anonymous agents. In: Proceedings of the 10th International Conference on the
Principles of Distributed Systems. pp. 395–409 (2006), 10.1007/11945529 28

17. Hoepman, J.H., Papatriantafilou, M., Tsigas, P.: Self-stabilization of wait-free
shared memory objects. Journal of Parallel and Distributed Computing 62(5),
818–842 (2002)

18. Hutle, M., Widder, J.: On the possibility and the impossibility of message-driven
self-stabilizing failure detection. In: Proceeding of the 7th International Symposium
on Self Stabilizing Systems. pp. 153–170. Springer Berlin / Heidelberg (2005)

19. Lamport, L.: On interprocess communication. part II: Algorithms. Distributed
Computing 1(2), 86–101 (1986)

20. Line, J.C., Ghosh, S.: A methodology for constructing a stabilizing crash-tolerant
application. In: Proceedings of the 13th Symposium on Reliable Distributed Sys-
tems. pp. 12 –21 (1994)

21. Line, J.C., Ghosh, S.: Stabilizing algorithms for diagnosing crash failures. In: Pro-
ceedings of the 13th Annual ACM symposium on Principles of Distributed Com-
puting. pp. 376–376 (1994)

22. Lynch, N.A.: Upper bounds for static resource allocation in a distributed system.
Journal of Computer and System Sciences 23(2), 254–278 (1981)

23. Mizuno, M., Nesterenko, M.: A transformation of self-stabilizing serial model pro-
grams for asynchronous parallel computing environments. Inf. Process. Lett. 66(6),
285–290 (June 1998)

24. Nesterenko, M., Arora, A.: Dining philosophers that tolerate malicious crashes.
In: Proceedings of the 22nd International Conference on Distributed Computing
Systems. pp. 172–179 (2002)

25. Nesterenko, M., Arora, A.: Stabilization-preserving atomicity refinement. Journal
of Parallel and Distributed Computing 62(5), 766–791 (May 2002)

26. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: Proceed-
ings of the 21st IEEE Symposium on Reliable Distributed Systems. pp. 22 – 29
(2002)

27. Pike, S.M., Sivilotti, P.A.: Dining philosophers with crash locality 1. In: Proceed-
ings of the 24th IEEE International Conference on Distributed Computing Sys-
tems. pp. 22–29 (2004)

28. Pike, S.M., Song, Y., Sastry, S.: Wait-free dining under eventual weak exclusion.
In: Proceedings of the 9th International Conference on Distributed Computing and
Networking. pp. 135–146 (2008)

29. Sastry, S., Pike, S.M., Welch, J.L.: The weakest failure detector for wait-free dining
under eventual weak exclusion. In: Proceedings of the 21st ACM Symposium on
Parallelism in Algorithms and Architectures. pp. 111–120 (2009)

30. Song, Y., Pike, S.M.: Eventually k-bounded wait-free distributed daemons. In:
IEEE International Conference on Dependable Systems and Networks. pp. 645–
655 (2007)

