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ABSTRACT
We have recently proposed a coordination language, called Hier-
archical Timing Language (HTL), for distributed, hard real-time
applications. HTL is a hierarchical extension of Giotto and, like its
predecessor, based on the logical execution time (LET) paradigm of
real-time programming. Giotto is compiled into code for a virtual
machine, called the Embedded Machine (or E machine). If HTL is
targeted to the E machine, the hierarchical program structure needs
to be flattened which makes separate compilation difficult and may
result in code of exponential size. In this paper, we proposea gen-
eralization of the E machine which supports a hierarchical program
structure at runtime through real-time trigger mechanismsthat are
arranged in a tree. We present the generalized E machine, anda
modular compiler for HTL that generates code of linear size.The
compiler may generate code for any parts of a given HTL program
separately in any order.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems

General Terms
Language, Compiler, Virtual Machine

Keywords
Real Time, Hierarchy, Code Generation

1. INTRODUCTION
Hierarchical Timing Language (HTL) is a hierarchical coordina-

tion language for distributed, hard real-time applications [6]. HTL
programs determine portable and predictable real-time behavior of
periodic software tasks running on a possibly distributed system of
host computers. An HTL program specifies task-to-host mappings,
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task frequencies, mode switching, and I/O times and dependen-
cies but not task implementations, which are assumed to be done
in some general purpose language such as C or Java. A task in
HTL is essentially sequential code that reads input, computes, and
writes output. HTL offers two fully hierarchical programming con-
structs: (sequential, conditional, parallel)compositionof tasks as
well asrefinementof abstract into concrete tasks. An abstract task
has a frequency, specific I/O times and dependencies, and a worst-
case execution time (WCET) but no implementation. An abstract
task is a temporally conservative placeholder for a concrete task
with an implementation. A concrete task refines an abstract task
if the concrete task has the same frequency but at least as much
time to compute, i.e., possibly relaxed I/O times and dependencies,
and as much or smaller WCET than the abstract task. The resultis
that a concrete HTL program is time-safe (schedulable) if itrefines
a time-safe abstract HTL program [6]. In general, checking re-
finement in HTL is exponentially faster than checking time safety
(schedulability). However, there are abstract HTL programs that
are not time-safe but for which time-safe refinements exist.

After checking refinement and time safety, HTL programs are
compiled into so-called E code of the Embedded Machine [9] or
E Machine. E code is virtual machine code with specific instruc-
tions for timing I/O activity, native task computation, andhost-
to-host communication. Time-safe E code is portable and pre-
dictable, and therefore provides a hardware- and OS-independent
target abstraction for compiling possibly distributed real-time pro-
grams. Further compiling E code into native code is possiblebut
has so far not been necessary even for high-performance applica-
tions such as helicopter flight control [12, 11]. However, E code has
originally been designed as target for compiling non-hierarchical
programs written in Giotto [8], which is the predecessor of HTL.
As a consequence, HTL compilation into conventional E code in-
volves flattening the input HTL programs and may therefore result
in exponentially larger output E code programs. Flatteningalso
prohibits compiling parts of large HTL programs separately.

In this paper, we propose to extend E code by adding instructions
for maintaining hierarchical program structure at runtimeto enable
separate compilation of (parts of) HTL programs into E code pro-
grams whose size linearly bounded by the size of HTL code. Our
solution trades off runtime performance for compile-time conve-
nience and E code size because execution of E code compiled from
flattened HTL programs may result in lower runtime overhead than
the execution of suchhierarchical E code, or HE code. All original
and most new instructions can be executed in constant time. How-
ever, a single new instruction that involves traversing hierarchical
structure requires linear time with respect to the size of the origi-
nal HTL program. This may only be avoided by again flattening



HTL programs prior to compilation. For simplicity and clarity, we
have chosen to define new instructions in RISC style where most
instructions have rather simple, “atomic” semantics. So far, run-
time performance has not been an issue but may easily be improved
using CISC-style macro instructions.

The contributions of this paper are the design of HE code (Sec-
tion 5), the design of compile-time support for separate HTLcom-
pilation (Section 6, Section 7) into HE code, the implementation of
runtime support for HE code as part of an existing E Machine im-
plementation, and the implementation of compile-time support for
separate HTL compilation into HE code in an existing HTL com-
piler implementation [1]. Throughout the paper we use a casestudy
(Section 2) to illustrate the contributions of the paper. Sections 3
and Section 4 discuss the key features of HTL and E Machine, re-
spectively. Section 8 compares our approach with related work.

2. CASE STUDY
The case study implements a distributed real-time controller for a

three-tank system (3TS in short). There are three tanksT1, T2 and
T3 (Fig. 1) each with an evacuation taptap1, tap2 andtap3
respectively. The tanks are interconnected via tapstap13 and
tap23. Two pumps,P1 andP2, feed water in the tanksT1 and
T2 respectively. The goal of the controller is to maintain the level
of water in tanksT1 andT2 under the presence and absence of
perturbations (simulated by the evacuation taps). If thereis no per-
turbation, a P (proportional) controller is used; under perturbations,
a PI (Proportional Integral) controller is used [10]. The modeling
generates four possible scenarios: (1) both pumps controlled by
P controllers, (2)P1 andP2 controlled by P and PI controllers
respectively, (3)P1 andP2 controlled by PI and P controllers re-
spectively, and (4) both pumps controlled by PI controllers.

Figure 1: Overview of three tanks system
The controller is implemented in a distributed fashion on three

E machines (Fig. 2). Each E Machine is implemented in C on a
Unix machine. The three E machines implement the controllerfor
P1, the controller forP2, and the interface controller. The tasks
are implemented in C. The schedulers in the Unix machines are
used for scheduling the released tasks. The E Machines commu-
nicate with each other through UDP. Communication with the 3TS
plant (reading heights of water in the tanks and sending fill debit
for each pump) is done via a TCP server implemented on a Win-
dows 98 machine. Refer tohttp://htl.cs.uni-salzburg.at/HEcodefor
implementation details and online demo.

3. HIERARCHICAL TIMING LANGUAGE
HTL is centered around two constructs: the core computation

and communication model, and the hierarchal programming struc-
ture. The first deals with task specification and communication be-
tween tasks, while the second deals with composition and refine-
ment of tasks.

Computation and Communication Model. The computation
model is theLogical Execution Model(LET) of task execution. A
LET task is a sequential code block with no internal synchroniza-
tion points. Each task has a release event and a termination event
specified by clock ticks or completion events of other tasks.The
task reads the inputs at the release event (even if the task starts ex-
ecuting later) and the task updates the outputs at the termination

Figure 2: Overview of implementation

event (even if the task terminates earlier). The LET model decou-
ples time when the input is read and output is written from actual
execution which makes the model time- and value-deterministic,
portable and composable [9].

The communication model of HTL is based oncommunicator[6],
a typed variable that can be accessed (read from or written to) with
a specified periodicity. Communicators are used to exchangedata
with environment (sensors and actuators are special cases of com-
municators) or between tasks. A task in HTL reads from certain in-
stances of some communicators, computes a function and writes to
certain instances of other communicators. Fig. 3 shows three com-
municators,h1 (period 100ms),u1 (period 100ms) andp1 (500
ms): h1 denotes the height in tankT1, u1 denotes the motor cur-
rent (for pumpP1) computed by the controller andp1 denotes the
perturbation in tankT1. Taskt1 reads the fourth instance ofh1,
computes control law for tankT1 and writes to the fifth instance
of u1. The latest read and earliest write time implicitly specifythe
LET of the task; in case oft1, the LET is from 300 to 400 ms.
The sequential code of the task is not expressed in HTL but in a
“foreign” language (e.g. C in our example).

Figure 3: Interaction between tasks and communicators
Tasks can also communicate with one another through untimed

variables referred asports. Fig. 3 shows two tasksreadHeights
andestimateP1 communicating via portp. TaskreadHeights
reads the sensors and writes to the fourth instance of communicator
h1. TaskestimateP1 reads portp and fifth instance ofu1, com-
putes perturbation for tankT1 and writes to the second instance of
p1. TaskestimateP1 reads the portp and hence reads the out-
put of the taskreadHeights as soon as the taskreadHeights
completes execution and does not have to wait until the fourth in-
stance ofh1.

Hierarchical Programming Structure. A set of interacting
tasks with the same frequency form an HTLmodewith a spec-
ified mode period. For example, the tasksreadHeights and
estimateP1 belong to modeimode, which has a period of 500ms.
All tasks in a mode execute with the periodicity of the mode. The
tasks within a mode interact through ports and communicators;
tasks from different modes interact only through communicators.
For example,readHeights andt1 are in different modes and
interact through communicatorh1; readHeightswritesh1while
t1 readsh1. HTL allows mode switching (at the end of mode pe-
riods) to model changes in real-time controllers. In the complete
specification we define two modesoneP andonePI invoking P
and PI control tasks for pumpP1 respectively; the modes switch
between themselves based on the perturbation in tankT1(i.e. the



value of the communicatorp1). A network of modes (with one be-
ing the start mode) and mode switches is an HTLmodule; e.g. modes
oneP andonePI are grouped in one module. An HTLprogram
is a set of modules and a set of communicators. The modes within
a module are composed sequentially while modes from different
modules are composed in parallel. The communicators are used
to exchange data between tasks in same module (but possibly dif-
ferent modes) and between tasks in different modules. The HTL
program (Fig. 4) for the controller,3TS Controller, consists
of three modulespumpOne, interface andpumpTwo and six
communicators. Refer tohttp://htl.cs.uni-salzburg.at/HEcodefor
the full specification and the complete program.

Figure 4: HTL program for 3TS controller
A mode (referred asparent mode) can berefined by another

HTL program (referred asrefinement program); any mode in the
refinement program is achild modeof the parent mode. The mode
modeOne is refined (Fig. 4) by programprogramOne which
has a single module with two modesoneP andonePI. Both the
modesoneP andonePI are child modes to parent modemodeOne.
Each task (referred aschild task) in a child mode maps to a unique
task (referred asparent task) in the parent mode. ModesmodeOne,
oneP andonePI invokes taskst1, t1P andt1PI respectively
with t1 being the parent of the other two tasks. During execution,
the parent task is replaced by the child task i.e. instead oft1, ei-
ther t1P or t1P1 executes. Whilet1 represents a control task
for pumpP1, t1P andt1PI are the P and PI version of the con-
troller respectively. In other words, parent task is anabstractspec-
ification while children tasks areconcreteimplementations of the
specification. Instead of specifying a functional behavior, a parent
task specifies the timing behavior of the concrete task e.g. parent
mode and child mode have identical periods, child task cannot be
released (resp. terminated) later (resp. earlier) than theparent task
and the WCET of the child task is bounded by that of the parent
task; these constraints are referred asrefinement constraints. There
can be tasks (in parent mode) which are not parent to any childtask
and will execute in parallel with tasks in child mode. Mode re-
finement does not add expressiveness; an HTL program with mul-
tiple levels of refinement can be translated into an equivalent flat
program without refinement. ModemodeOne can be replaced by
the switching modesoneP andonePI. However mode refinement
helps in astructured and concisespecification. In the top-level,
modemodeOne invokes control task for pumpP1; however no
distinction is made for different scenarios. In the second level (pro-
gramprogramOne) the distinction is made between absence and
presence of perturbations and thus requiring the use of P andPI
control tasks. There can be subsequent refinement (e.g.refOne)
which distinguishes slower and faster invocations of PI control task.
Refinement helps in succinct expression ofchoice(a task is parent
to several chidren tasks in different sequential modes),change(par-
ent and child task have different I/O),space(empty parent tasks
that can be refined later) andreplacement(replacing a refinement

program with another). Mode refinement helps in conservatively
simplifying program analysis: e.g. schedulability check can only
be done for the top-level program, and the refinement constraints
preserve [6] the schedulability across the hierarchy.

Distribution. HTL modules can be distributed over several hosts.
Distribution is specified through a mapping of top-level modules to
hosts. All refinements of all modes in a top-level module are bound
to the same host to which the module is mapped. The distribution
is implemented by replicating shared communicators on all hosts,
and then have the tasks that write to shared communicators broad-
cast the outputs. For this purpose, the LET model is extendedto
include both WCETs as well as the worst-case output transmission
times (WCTTs). The semantics (i.e., the real time behavior)of
an HTL program is independent of the number of hosts, but code
generation and program analysis take the distribution intoaccount.
In the case study, the three modulespumpOne, interface and
pumpTwo are implemented on three different hosts.

4. THE EMBEDDED MACHINE
The Embedded Machine or E Machine controls the release of

tasks and the time when variable values are exchanged (i.e. copied
or initialized). The variables are accessed through so calleddrivers.
A task or a driver is implemented in any other language e.g. C.In
the original E Machine definition there are six E code instructions.
There are three non-control flow instructions:call , release and
future . The instructioncall(d) executes a driverd . The instruc-
tion release(t) releases a taskt for execution. The task may not be
immediately executed; the actual execution of the task willdepend
on the real-time schedular being used. The instructionfuture(e, a)
marks E code at addressa for future execution when the predicate
e evaluates to true, i.e., whene is enabled. The pair(e, a) is a trig-
ger: predicatee observes events such as time tick events (raised by
the real-time clock) and completion events of tasks (raisedby the
executing platform) and is enabled when all observed eventshave
occurred. The E machine maintains a FIFO queue of triggers. If
multiple triggers in the queue are enabled at the same instant, the
corresponding E code is executed in FIFO order, i.e., in the order
in which thefuture instructions that created the triggers were exe-
cuted. There are two control flow instructions:if andjump. The
conditional instructionif (cnd , a) branches to the E code at address
a if predicatecnd evaluates to true. Aconditioncnd observes vari-
able states. The non-conditional control flow instructionjump(a)
executes an absolute jump to E code addressa. There is one ter-
mination instructionreturn which completes the execution of an
E code sequence.

Figure 5: Triggers, queue of triggers and implicit tree
We make the following changes to allow execution of hierarchi-

cal code on E Machine.First, the trigger definitions are modified.
Each trigger in addition to an event predicate and E code address,
tracks a parent trigger and a set of children triggers. With the new
trigger definition, a trigger queue is an implicit tree (Fig.5). Sec-
ond, two stacks are added to track the hierarchy of the program.
The stacks are used to remember the position of code being exe-
cuted in the hierarchy of the whole program and to add parent and
children information to newly created triggers.Third, the modified
E machine maintains three trigger queues instead of one. While one
FIFO queue order the actions of simultaneously ordered triggers,



parallel FIFO queues provide second ordering on simultaneously
enabled triggers. In case of code generated for HTL programs,
the multiple queues are used to order communicator updates,mode
switche checks, communicator reads and task releases.Fourth,
E code instructions are modified/ added to operate on the new trig-
gers and to access the stacks and the queues. The new E code is
referred asHierarchical E code(HE code).

5. SEMANTICS OF HE CODE
The semantics of an HE code program can be represented as a

set of traces where each trace is a sequence of configurations. Each
configuration tracks the following: state of program variables, set
of released tasks, queues of triggers, address of the current instruc-
tion being executed, set of registers storing trigger names, stack of
trigger names and stack of addresses. Formally, atrace is a (possi-
bly infinite) sequence of configurationsu0, u1, · · · whereu0 is the
starting configuration. Each configuration is a tuple(state ,writeQ ,
switchQ , readQ , tasks ,PC ,R0 ,R1 ,R2 ,R3 , parent stack ,
address stack ), wherestate is variable state,writeQ , switchQ
and readQ are FIFO queues of triggers,tasks is a set of tasks,
PC is a program counter,R0 , R1 , R2 , andR3 are registers to
store trigger names,parent stack is a stack of trigger names, and
address stack is a stack of addresses. For any two consecutive
configurationsui−1, ui wherei > 0, ui is the result of progress of
clock (time tick event), completion of task (task completion event)
or execution of an instruction (see below) at configurationui−1.

The variable statestate tracks the values of program variables;
e.g. for HTL programs the variables are communicators and ports.
The task settasks tracks the set of tasks released for execution;
once a task completes execution the task is removed fromtasks .
The program counterPC is the address of the current instruction
being executed. The set of program addresses isadrset ∪ {⊥};
PC = ⊥ signifies there is no instruction being executed and the
E machine is either checking for enabled triggers or waitingfor an
event. We will denote the instruction at addressa as ins(a) and
the next address followinga asnext(a).

A trigger g is a tuple(e, a, par , clist), wheree is an event,a
is an address,par is a trigger name, andclist is a list of trigger
names. Aneventis a pair(n, cmps), wheren ∈ N≥0 andcmps
is a set of task names. The positive integern denotes the num-
ber of time tick events being waited for. The setcmps denotes the
tasks whose completion event is being waited for. A trigger is en-
abledwhenn = 0 andcmps = ∅. When a trigger is created, it
is assigned an unique name until the trigger is removed. Atrigger
nameis the reference to a trigger; a trigger can be accessed through
trigger names. The registers store trigger names. A register can be
copied and/or reset without affecting the trigger unless the trigger
is removed or modified by HE code instructions. The triggers are
unique identities and are not duplicated; however they can be mod-
ified when events occur. A trigger may bemodifiedby updating the
associated event, changing the parent, or by modifying the children
list. The trigger queueswriteQ , switchQ and readQ are FIFO
queues of triggers. A trigger can be present in at most one queue.

The address stack tracks the hierarchical position of the pro-
gram, mode and module for which code is being executed. The
parent stack remembers the hierarchy of the switch triggers. There
are two operations to access the stacks:push andpop. Operation
push(address stack , a) pushes addressa onaddress stack . Op-
erationpop(address stack ) returns the top value ofaddress stack ;
the value is an addressa if the stack is non-empty,⊥ otherwise.
Operationpush(parent stack ,Rx) pushes the trigger name stored
in registerRx (wherex ∈ 0, 1, 2, 3) on parent stack . Opera-
tion pop(parent stack ) returns the top value ofparent stack ; the
value is a trigger name if the stack is non-empty,⊥ otherwise.

The E machine iswaiting if none of the triggers in any of the
queues are enabled,PC = ⊥ and address stack is empty. The
machine is in statewriting if there exists at least one enabled trigger
in the write queue. The machine is in stateswitchingif there exists
no enabled trigger in the write queue but there exists at least one
enabled trigger in the switch queue. The machine is in statepost-
switchif there exists no enabled trigger in the write and the switch
queue but there exists at least one enabled trigger in the read queue.

If the machine is waiting, a time tick or a task completion event
updates the event for the triggers. For a time tick event: forall trig-
gers((n, ·), ·, ·, ·) wheren > 0, the trigger is updated to((n −
1, ·), ·, ·, ·). For a completion event for taskt: for all triggers
((·, cmps), ·, ·, ·) andt ∈ cmps , the trigger is updated to((·, cmps\
{t}), ·, ·, ·). If the E machine enters into non-waiting state (by en-
abling some triggers) after handling an event, the write queue is
traversed in FIFO order until an enabled trigger is found andthe
trigger is handled. When a trigger(·, a, ·, ·) is handled, program
counterPC is set toa, the name of the trigger is stored in regis-
terR0 and the trigger is removed from the queue. The E machine
continues the execution at addresses followinga until a return in-
struction is executed. When areturn execution is executed, the
trigger (which triggered the code execution) is deleted from the
system and code execution starts from the address popped from the
address stack. This is continued until the address stack is empty. At
this point the control starts searching for other enabled triggers in
the write queue; if no other trigger is enabled, the machine enters
into switching state. If the E machine enters intoswitchingstate,
the switch queue is traversed in FIFO order (and enabled triggers
are handled) until the machine is in statepost-switch. If the E ma-
chine enters intopost-switchstate, the read queue is traversed in
FIFO order (and enabled triggers are handled) until the machine is
in statewaiting. The handling of triggers in all the three queues are
identical.

Next we discuss the effect of executing the HE code instructions.
Let the configuration be(state ,writeQ , switchQ , readQ , tasks ,
PC ,R0 ,R1 ,R2 ,R3 , parent stack , address stack ) when an in-
struction at addressa is being executed (i.e.PC = a). Once the
instruction is executed, the new configuration be(state ′,writeQ ′,
switchQ ′, readQ ′, tasks ′,PC ′,R0 ′,R1 ′,R2 ′,R3 ′, parent stack ′,
address stack ′). If ins(a) is being executed,PC ′ = next(a) un-
less otherwise mentioned. A parameter has the same value over the
execution unless otherwise mentioned.

• ins(a) = call(d): driver d is executed which updates vari-
able state tostate ′

• ins(a) = release(t): tasks ′ = tasks ∪ {t}

• ins(a) = writeFuture(e, a): writeQ ′ = writeQ ◦ g ′

whereg ′ = (e, a,⊥, ∅) andR1 ′ stores the name ofg ′

• ins(a) = switchFuture(e, a): switchQ ′ = switchQ ◦ g ′

whereg ′ = (e, a,⊥, ∅) andR1 ′ stores the name ofg ′

• ins(a) = readFuture(e, a): readQ ′ = readQ ◦ g ′ where
g ′ = (e, a,⊥, ∅) andR1 ′ stores the name ofg ′

• ins(a) = jumpIf (cnd , a): if condition cnd is true, then
PC ′ = a ′ elsePC ′ = next(a)

• ins(a) = jumpAbsolute(a ′): PC ′ = a ′

• ins(a) = jumpSubroutine(a ′): PC ′ = a ′ and
address stack ′ = push(address stack ,next(a))

• ins(a) = copyRegister (Rx,Ry) wherex, y ∈ {0, 1, 2, 3}
andx 6= y: copy the content of registerRx to registerRy

• ins(a) = pushRegister (Rx) wherex ∈ {0, 1, 2, 3}:
push the content of registerRx on toparent stack i.e.
parent stack ′ = push(parent stack ,Rx)



• ins(a) = popRegister (Rx) wherex ∈ {0, 1, 2, 3}:
pop content fromparent stack to registerRx i.e.
Rx′ = pop(parent stack )

• ins(a) = getParent (Rx,Ry) wherex, y ∈ {0, 1, 2, 3}
andx 6= y: load the name of parent of trigger pointed to
by Rx into registerRy

• ins(a) = setParent(Rx,Ry) wherex, y ∈ {0, 1, 2, 3}
andx 6= y: the trigger name inRy is stored as the parent
of the trigger pointed to by registerRx

• ins(a) = copyChildren(Rx,Ry) wherex, y ∈ {0, 1, 2, 3}
andx 6= y: the children list of the trigger pointed to byRy is
stored as the children list of the trigger pointed to by register
Rx

• ins(a) = setParentOfChildren(Rx,Ry) wherex, y ∈
{0, 1, 2, 3} andx 6= y: set the trigger name inRy as the
parent of all the triggers in the children list of the trigger
pointed by registerRx

• ins(a) = deleteChildren(Rx) wherex ∈ {0, 1, 2, 3}: for
all trigger names in children list of trigger referred by register
Rx: (recursively) delete the triggers pointed by the children
list and remove the triggers from the queue

• ins(a) = replaceChild(Rx,Ry,Rz) wherex, y, z ∈ {0, 1,
2, 3} andx 6= y 6= z: in the children list of trigger pointed
to by registerRx, replace the trigger name identical to that
in Ry by the trigger name inRz

• ins(a) = cleanChildren(Rx) wherex ∈ {0, 1, 2, 3}: delete
the children list of trigger pointed by registerRx

• ins(a) = return(): PC ′ = pop(address stack)

Once a trigger is handled and removed from the queue, the trig-
ger is deleted from the system when the code block (started bythe
trigger) ends. For general HE code program, a garbage collector
may be necessary to properly remove all de-referenced triggers and
to ensure that there is no reference fault (trigger name is being used
but the trigger itself has been deleted). Code generated from an
HTL program does not create any such problem; so we avoid the
definition of a formal garbage collector. All of the above instruc-
tions exceptdeleteChildren can be executed in constant time. The
execution ofdeleteChildren requires time linear in the size of the
original HTL description of the involved children.

The E machine starts with the following configuration:state
is default value of each variable,writeQ = ∅ , switchQ = ∅,
readQ = ∅, tasks = ∅, PC = ⊥, R0 = ⊥, R1 = ⊥, R2 = ⊥,
R3 = ⊥, address stack = ∅, andparent stack = ∅.

6. HANDLING HIERARCHY IN HE CODE
There are two major concerns for handling HTL programs in

HE code: tracking the current position in the hierarchy (i.e. which
program, module or mode is being executed) and maintaining the
hierarchical relation between modes. The first is done by subroutine-
like calls to initialize and execute programs, modules and modes;
refer Section 7 for details. Intuitively, the address stackstores the
addresses of programs, modules and modes in a tree like fash-
ion so that E Machine knows which program, module or mode
is to be initialized/executed once the current one has been initial-
ized/executed. Maintaining the hierarchical relation is more in-
volved and is done through triggers and HE code instructions. For
HTL programs, the compiler generates triggers as follows: all trig-
gers associated with writing communicators are stored in the write
queue, all triggers associated with mode switch checks are stored
in the switch queue and all triggers associated with readingcom-
municators (and subsequently releasing tasks) are stored in the read

queue. The writing of communicators in a module, reading of com-
municators in a mode and releasing of tasks in a mode are indepen-
dent of other modes, modules and programs. The above holds if
the HTL program is race free (ensured by structural checks) and
if all communicators are written before they are read (ensured by
handling triggers in the write queue before that of the switch and
the read queue). However checking switches (and subsequentac-
tions) in a mode depend on other modes. For code generated from
HTL, triggers in the write and the read queue have no parent and
children information; in other words they do not carry any hierar-
chy information. Only triggers in the switch queue have hierarchy
information.

In HTL, switches for a parent mode and its children modes are
enabled simultaneously due to constraints on timing behavior. The
HTL semantics prioritizes the mode switch check (and subsequent
action) of the parent mode over those of the children. Consider
an instance when modesmodeOne, onePI and oneSlow are
active (Fig. 6). ModemodeOne has no mode switches i.e. it is
invoked repeatedly. There are three possible scenarios: (1) none
of the modes switches, (2) onlyoneSlow switches tooneFast
i.e. the new combination ismodeOne, onePI andoneFast, and
(3) onePI switches i.e. the new combination ismodeOne and
oneP; the switch ofoneSlow does not matter in the transition.

Figure 6: Mode switch for HTL programs

The switching action of HTL is reflected in the HE code as fol-
lows. The compiler generates code in such a way that there is ex-
actly one trigger per mode in the switch queue i.e. the implicit tree
in the switch queue is the hierarchy of the modes in the program.
When a trigger in the switch queue is enabled, the corresponding
mode switch is checked; if the mode switch is false then the mode
is reinvoked, otherwise all triggers (in the switch queue) related to
the modes in the refinement program of the mode are removed and
the target mode is invoked.

Figure 7: Handling switch checks in HE code
Consider the situation when modesmodeOne,onePI andoneSlow

are executing and switch condition forOnePI is true. Fig. 7.a
shows the associated triggers in the switch queue; instead of the
queue, the implicit tree structure has been shown. First, the trig-
gers in the switch queue from refinement program ofonePI are
removed (Fig. 7.b). A new trigger for the target modeoneP is
generated (Fig. 7.c), the parent information is transferred to the
new trigger(Fig. 7.d) and the trigger for modeonePI is removed.
The trigger for modeoneSlow is removed without even checking
whether the switch condition is true or false. In another scenario,
consider the mode switch condition ofonePI is false i.e. the mode
will be reinvoked. First a new trigger is created for modeonePI
in the switch queue (Fig. 7.e) with no parent and children informa-
tion. Next, the parent and children information of the old trigger



for onePI is redirected to the new trigger foronePI (Fig. 7.f)
and the old trigger foronePI is removed from the switch queue.
The E machine will next traverse the queue to check mode switch
for oneSlow.

7. HTL COMPILER
The compiler (Fig. 8) for HTL ensures that the program satisfies

the constraints on parallel composition of modules, refinement of
modes and timing of tasks relative to the target platform [6]. The
WCET/ WCTT information for tasks are provided by an external
tool. If the checks go through, HE code generator generates code
for a distributed implementation. The code generation is done by
compiling the whole program for each host. Each host maintains
its own copies of all communicators and ports; however tasksare
executed on the host only if the corresponding mode (in whichthe
task is invoked) is mapped onto that host. Whenever a task com-
pletes execution, the output is broadcast to all hosts and stored in
local ports; when a communicator (on a host) is to be written,the
value of the local port is copied to the communicator. Release tasks
are dispatched for execution by an EDF scheduler; the scheduler is
external to the E Machine.

Figure 8: Structure of compiler and runtime system
The compiler generates code for program, module and mode by

invoking Alg. 1, Alg. 2 and Alg. 3 respectively. The compileruses
symbolic addresses to refer to different parts of the code. For each
programP, program init address [P] andprogram start address [P]
denotes the address of the HE code block that initializes andexe-
cutesP respectively. For each moduleM, module init address [M]
andmodule start address [M] denotes the address of the HE code
block that initializes and executesM respectively. For each mode
m, mode start address [m] is the address of the HE code block that
startsm and target mode address [m] is the address of HE code
block that will be executed when another mode switches tom. Each
modem is divided in uniform units corresponding to the smallest
period between two time events (i.e., write of a communicator or
read of a communicator) inm. Given a modem, the duration of
an unitγ[m] is the gcd of all access periods of all communicators
accessed (i.e. read or written) inm and the total number of units
is π[m]/γ[m], whereπ[m] is the period ofm. For each uniti of ev-
ery modem the compiler generates separate code blocks for up-
dating communicators, checking switches (and related actions) and
reading communicators (and releasing tasks): the address of the
HE code block that writes communicators ismode unit write[m, i ],
the address of the HE code block that checks switch conditionis
mode unit switch[m, i ], and the address of the HE code block
that reads communicators ismode unit read [m, i ]. HTL seman-
tics constraints that at any instance, communicator writes, mode
switch checks, communicator reads and task releases shouldbe
done in the above order to maintain consistency of communicator
values across all modules. The address of the HE code block that

sets up the execution order of communicator writes, switch checks
and communicator reads (and task releases) ismode body address [m].
Instructions may forward reference to any of the above symbolic
addresses and therefore need fix up during compilation.

Alg. 1 generates code for a programP on a hosth. The code
at addressprogram init address [P] initializes all communicators
declared inP by calling respective initialization drivers (init(·)
denotes the initialization driver for a communicator or a port) and
then calls initialization subroutines for each of the modules. Code
at addressprogram start address [P] calls the start subroutine for
each moduleM in P.

Algorithm 1 GenerateECodeForProgramOnHost(P, h)

setprogram init address [P] to PC and fix up
// initialize communicators
∀c ∈ communicators(P):emit(call(init(c)))
// initialize all the modules inP
∀M ∈ modules(P):

emit(jumpSubroutine(module init address [M]))
// return from initialization subroutine ofP
emit(return)
setprogram start address [P] to PC and fix up
// start all the modules inP
∀M ∈ modules(P):

emit(jumpSubroutine(module start address [M]))
// return from start subroutine ofP
emit(return)

Alg. 2 generates code for a moduleM on hosth. Code at ad-
dressmodule init address [M] initializes all task ports (denoted by
taskPorts(M)) of the tasks inM by calling respective initialization
drivers. All tasks maintain two sets of local ports, calledtask input
portsandtask output ports, which are not accessible by other tasks.
At release, the tasks reads communicators and ports to task input
ports and execute on the value of the task input ports. At comple-
tion, the task output ports are updated. The communicators and
ports are written from the task output ports when the writingis due.
Code atmodule start address [M] calls the execution code for the
start mode,start[M], for the moduleM.

Algorithm 2 GenerateECodeForModuleOnHost(M, h)

setmodule init address [M] to PC and fix up
// initialize task ports
∀p ∈ taskPorts(M):emit(call(init(p)))
// return from initialization subroutine ofM
emit(return)
setmodule start address [M] to PC and fix up
//start the start mode ofM
emit(jumpSubroutine(mode start address [start[M]]))
// return from start subroutine ofM
emit(return)

We will use the following auxiliary operators for Alg. 3. Theset
readDrivers(m, i) contains the drivers that load the tasks in mode
m with values of the communicators that are read by these tasksat
unit i . The setwriteDrivers(m, i) contains the drivers that load
the communicators with the output of the tasks in modem that write
to these communicators at uniti . The setportDrivers(t) con-
tains the drivers that load task input ports of taskt with the values
of the ports on whicht depends. The setcomplete(t) contains
the events that signal the completion of the tasks on which task
t depends, and that signal the read time of the taskt. The set
releasedTasks(m, i) contains the tasks in modem, with no prece-
dences, that are released at uniti . The setprecedenceTasks(m)
contains the tasks in modem that depend on other tasks.



Alg. 3 first emits code (at addressmode start address [m]) for
checking all the mode switches (lines1 - 3) in a modem, so that
they are tested first timem is invoked. Next, code is generated
(at addresstarget mode address [m]) to handle the case when no
switch is enabled: a call to code atmode body address [m], fol-
lowed by a call to the refinement program (if any). This sets the
execution of a mode before the execution of the refinement pro-
gram. Code atmode body address [m] (lines 40 - 49) sequences
the execution order of communicator writes, switch checks and
communication reads (and subsequent task release), for unit zero
of modem. This is done by emitting a future instruction (line41)
for mode unit write [m, 0] (trigger added towriteQ), a future in-
struction (line42) for mode unit switch [m, 0] (trigger added to
switchQ ) and a future instruction (line49) for mode unit read [m, 0]
(trigger added toreadQ ). Whenever a trigger is created and added
to a queue, the relevant trigger pointer is stored in register R1 .
Once a trigger is added in the switch queue, the hierarchy informa-
tion has to be updated (lines43 - 48). There are two scenarios: one,
the code is invoked by handling an enabled trigger in the switch
queue i.e. a mode switch has occurred or a mode is being rein-
voked (lines28 - 39) and two, the code is invoked when a mode
is executed for the first time (line5). In both the scenarios register
R0 records the relevant hierarchy information. In the first scenario
it stores the name of the last trigger in the switch queue thatwas
handled (by semantics, if any trigger is handled the name is stored
in R0 ). In the second scenario, it stores the name of the last trigger
in the switch queue that was created. Code in lines43 - 47 redirects
the parent and children ofR0 to R1 . A copy of R1 needs to be
stored inR2 (line 48), as a new trigger for the read queue may re-
move the information of the last trigger added to the switch queue
from R1 .

Code emission at lines6 - 17 checks whether a refinement pro-
gram exists and subsequently updates the hierarchy information if
there is one. Before the code generation for refinement program
(line 12), the hierarchy is updated (lines7 - 11) as refinement adds
one level of hierarchy; once the code generation of the refinement
program completes the level is restored (lines13 - 16). The hier-
archy is updated through registerR0 . The parent ofR0 is pushed
onto the stack (lines8 - 9); the parent of the trigger pointed byR0
is changed to the trigger name inR2 (which contains a pointer to
the last trigger added to the switch queue) and children listis reset
(code for refinement program has yet to be generated and thus there
is no children information). In effect, for the code generation of the
refinement program, parent ofR0 points to the parent trigger of all
the triggers to be added in the switch queue for that program.To
restore the hierarchy level, the parent ofR0 is updated by popping
the parent stack and is used by modes of parallel modules.

The code atmode unit write[m, i ] (lines23 - 27) calls the driver
for each communicator being written at the uniti of modem. The
code atmode unit switch [m, i ] (lines 29 - 39) checks the mode
switches. In HTL, modes can switch only at period boundaries; so
the switches are checked only for unit zero (line28). If no mode
switch occurs (line33) the code jumps tomode body address [m].
If a mode switch occurs, then all children of the last enabledtrigger
in the switch queue (the name is stored in registerR0 ) are removed
(lines34 - 37). The removal of children is recursive, thus all chil-
dren of subsequent children are also removed. Once the children
are removed, the code jumps (lines38 - 39) to the target address
of the destination modetarget mode address [m′], wherem′ is the
destination mode. The code atmode unit read [m, i ] (lines52 - 71)
reads all communicators (by calling drivers that copy from com-
municators into task input ports) that are to be read at uniti , and
releases all tasks (with no precedences), that should be released at
unit i . For unit zero (line58), code is generated to release prece-
dence tasks (lines59 - 69). For each taskt with precedences, a

trigger is added toreadQ : the trigger is activated at the completion
of preceding tasks oft; and the subsequent code writes input ports
of t and releasest. Lines (72 - 76) emit code to jump from one unit
to the next; the codes add triggers to the write and the read queue
only as switches are not possible in the middle of HTL modes.

The code generation algorithm for a program/ module/ mode ac-
cesses other programs, modules or modes through symbolic ad-
dresses and does not influence the code generation of other pro-
grams, modules and modes. Thus parts of HTL programs can be
compiled in any order separately.

8. COMPARISON AND RELATED WORK
E code vs. HE Code. The E code and the HE code are compared

in two ways: runtime overhead and code size generated by the HTL
compiler. We measured the time spent in interpreting E code and
HE code for the 3TS case study HTL program; the delay introduced
by code interpretation is below 1% for both E code and HE code.
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The code size is compared for HTL descriptions withm pro-
grams ( i.e. one top-level program andm−1 refinement programs)
andn modules (m ≤ n i.e. we ruled out empty programs) where
each module has two modes switching between themselves. For
each such scenario there are a number of possible HTL descrip-
tions. Consider the case whenm = 2 andn = 3; with the above
restrictions there is one top-level program and one refinement pro-
gram (refining one of the modes of the top-level program). There
are two possible HTL descriptions: top-level program with two
modules (i.e. refinement program with one module) and refinement
program with two modules (i.e. top-level program with one mod-
ule). For eachm andn, the worst-case code size for E code and
HE code are compared. The number of HE code instructions de-
pends upon the number of programs and modules and is thus fixed
for any description for givenm andn. The number of E code in-
structions depends upon the flattening and thus widely varies across
the different descriptions for givenm andn. Fig. 9 and Fig. 10
compares the code size for the E code and the HE code respectively
for 1 ≤ m ≤ 10 and1 ≤ n ≤ 10. The worst case E program (7177
E code instructions) is an order of magnitude larger than that of the
HE program (555 HE code instructions).

Code Generation for Timed Languages. Timed languages have
been pioneered by Giotto [8]. In Section 1 we discussed the dif-
ference in code generation for a flat structure like Giotto and our
proposed approach for HTL. Other LET based languages include
TDL [5] and Timed-Multitasking (TM) [13]. Like Giotto, TDL
is restricted to one level of periodic tasks and the code generation
technique does not address hierarchical programs. TM, an actor
based language, uses an event-triggered approach by expressing
LET through deadlines. TM can express hierarchy by having ac-
tors defined in other actors; however the code generation does not
explicitly addresses the hierarchical structure.

Code Generation for Synchronous Languages. Synchronous
languages (e.g. Esterel [3] and Lustre [7]) theoretically subsume



Algorithm 3: GenerateECodeForModeOnHost(m, h)
0 setmode start address [m] to PC and fix up
1 // check mode switches
2 ∀(cnd , m′) ∈ switches(m):
3 emit(jumpIf (cnd , target mode address [m′]))
4 settarget mode address [m] to PC and fix up
5 emit(jumpSubroutine(mode body address [m]))
6 if (programP refinesm)
7 //increment the level
8 emit(getParent(R0 ,R3 ))
9 emit(pushRegister(R3 ))

10 emit(setParent(R0 ,R2 ))
11 emit(cleanChildren(R0 ))
12 emit(jumpSubroutine(program start address [program[m]]))
13 //decrement the level
14 emit(popRegister (R3 ))
15 emit(setParent(R0 ,R3 ))
16 emit(cleanChildren(R0 ))
17 end if
18 // return from start subroutine ofm
19 // OR wait for other triggers to become enabled
20 emit(return)
21 i := 0
22 while i < π[m]/γ[m] do
23 setmode unit write[m, i ] to PC and fix up
24 // write communicators from task output ports
25 ∀d ∈ writeDrivers(m, i):emit(call(d))
26 // wait for other triggers to become enabled
27 emit(return)
28 if (i = 0)
29 setmode unit switch[m, 0] to PC and fix up
30 // check mode switches
31 ∀(cnd , m′) ∈ switches(m):
32 emit(jumpIf (cnd , PC + 2))
33 emit(jumpAbsolute(PC + 4))
34 // cancel all triggers related to the refining
35 // program ofm, and its subprograms
36 emit(deleteChildren(R0 ))
37 emit(cleanChildren(R0 ))
38 // switch to mode m’
39 emit(jumpAbsolute(target mode address [m′]))
40 setmode body address [m] to PC and fix up

41 emit(writeFuture(π[m],mode unit write[m, 0]))
42 emit(switchFuture(π[m],mode unit switch[m, 0]))
43 emit(getParent(R0 ,R3 ))
44 emit(replaceChild (R3 , R0 ,R1 ))
45 emit(setParentOfChildren(R0 , R1 ))
46 emit(setParent(R1 , R3 ))
47 emit(copyChildren(R1 ,R0 ))
48 emit(copyRegister(R1 , R2 ))
49 emit(readFuture(0, mode unit read [m, 0]))
50 emit(return)
51 end if
52 setmode unit read [m, i ] to PC and fix up
53 if (modem is contained in a module on hosth)
54 // read communicators into task input ports
55 ∀d ∈ readDrivers(m, i):emit(call(d))
56 // release tasks with no precedences
57 ∀t ∈ releasedTasks(m, i):emit (release(t))
58 if (i = 0)
59 // release tasks with precedences
60 ∀t ∈ precedenceTasks(m):
61 // wait for tasks on whicht depends to complete
62 emit(readFuture(complete(t), PC + 2))
63 emit(jumpAbsolute(PC + 3 + |portDrivers(t)|))
64 // read ports of tasks on whicht depends,
65 // then releaset
66 ∀d ∈ portDrivers(t):emit(call(d))
67 emit(release(t))
68 // wait for other triggers to become enabled
69 emit(return)
70 end if
71 end if
72 if(i < π[m]/γ[m] − 1)
73 // jump to the next unit of modem
74 emit(writeFuture(γ[m], mode unit write[m, i + 1]))
75 emit(readFuture(γ[m], mode unit read [m, i + 1]))
76 end if
77 // wait for other triggers to become enabled
78 // OR return from body subroutine ofm
79 emit(return)
80 i := i + 1
81 end while

HTL; however HTL offers an explicit hierarchical program struc-
ture that supports refinement of tasks into task groups with prece-
dences. Simulink-to-SCADE/Lustre-to-TTA [4] is a tool chain that
accepts discrete time models written in Simulink, translates to Lus-
tre models, verifies system properties (e.g. schedulability) and gen-
erates code for a target time-triggered architecture. Taxys [2], a
tool chain that combines Esterel and model checker Kronos, gen-
erates an application specific scheduler that ensures timing com-
mitment of tasks. Our code generation technique differs from the
above two approaches in accounting for the hierarchical structure
(e.g. Simulink models are hierarchical but Lustre is not which ne-
cessitates the code generator to flatten the structure) and in generat-
ing code for a virtual machine (both the above tool chains generate
code for specific target) which makes the generated code portable
across implementations.

9. CONCLUSION
Previously we presented an implementation of HTL, a hierar-

chical coordination language for distributed hard real-time applica-
tions on E Machine, a virtual machine. However, HTL programs
must be flattened because of the limitations of the E Machine.This
paper presents a modified E Machine to enable separate and linear-
space-bounded compilation of HTL. We introduced the semantics
of the modified E Machine and the changes in compile-time and
runtime infrastructure. In the future, we plan to use the modified
E Machine for high-performance, 50-100Hz helicopter flightcon-
trol [1].
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