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Abstract—In multi-view modeling languages like UML,
models contain several diagrams, each of which focusing
on a specific aspect of the system. However, when the
diagrams are combined, they give a coherent description
of all static and dynamic aspects of the system. Diagrams
may then extend each other or add constraints to other
diagrams. Considering this additional information improves
model versioning, as conflicts are revealed also in case their
changes are not overlapping, and merge algorithms may
provide solutions which are correct by construction.

This paper describes a challenge benchmark for
semantics-aware merging of sequence diagrams with respect
to their corresponding state machine diagrams.

I. Introduction
As software systems are getting larger, it is crucial to
decompose its specification into components, different
levels of abstraction, and several views, each focusing
on specific static or dynamic aspects of the system [1].
Therefore, multi-view modeling languages like the Uni-
fied Modeling Language (UML) [2] provide several dia-
grams like Class diagrams, State machine diagrams, and
Sequence diagrams, featuring a mutual relationship to
each other. Altogether the diagrams render a coherent
picture of the system. This paper targets the challenge
and chance for model versioning systems to deal with the
semantics of multi-view modeling languages. We focus on
the evolution of sequence diagrams, which are associated
with state machine diagrams. It is assumed that the
state machine diagrams are stable and only the sequence
diagrams change. In order to keep the scenario clear,
we provide a dedicated metamodel for the Tiny Multi-
View Modeling Language (tMVML). Although tMVML is
inspired by UML, it hides unnecessary complexity and
exhibits a compact representation of the concepts needed
for our purpose. An excerpt of the tMVML metamodel is
depicted in Figure 1. The root class of tMVML named
Model contains the two classes StateMachineView and
SequenceDiagramView representing views, and the
class ActionSymbol, which realizes the relationship be-
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Fig. 1: Metamodel of the tMVML.

tween those views. The StateMachineView contains a
set of state machines, each containing a set of states.
Transitions connect states and are associated with one
action symbol as trigger and one or more action symbols
as effect. The SequenceDiagramView contains a set of
lifelines and a set of messages. Each lifeline is assigned to
a state machine and contains a sequence of events, which
are connected to a message. Messages carry an action
symbol and are ordered relative to the lifelines they are
attached to.

An Ecore based implementation of tMVML is available
as Eclipse plug-in at our updatesite1. Further details on
the formal semantics of tMVML are described in [3].

II. Example
The following example modeled with tMVML serves as
motivation for semantics-aware model versioning. Fig-
ure 2 shows state machine diagrams describing the basic
behavior of a PhD student and a coffee machine. State
machine diagrams represent the system’s behavior in
terms of states the system may be in. States are connected

1http://www.modelevolution.org/updatesite/
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Fig. 3: Evolution of a sequence diagram.
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Fig. 2: State machine diagrams of a coffee machine and
a PhD student.

to each other by transitions. The initial state of each state
machine diagram is indicated by an incoming transition
from a black circle. Each transition is labeled following
the pattern trigger/effects. The trigger causes the state
machine to change its state from the source state of
the transition to the target state of the transition. The
possibly empty set of effects consists of action symbols
that are sent when the transition is executed and which
may again trigger state transitions in the same or other
state machines. For example, the state machine PhD of
the Phd student starts in state Home and resides in this
state until it receives hasWork, which causes a transition
to state Working. When the transition is executed, it sends
the effect on, which is received by the state machine CM
of the coffee machine and leads to a transition from the
initial state Off to state Idle.

Such communication scenarios are modeled by se-
quence diagrams. Communication partners are instances

of state machines and are represented by lifelines, which
exchange sequences of messages. In this work, we only
consider synchronous message passing. Messages connect
two lifelines and contain an action symbol. The action
symbol glues the communications of the sequence dia-
gram to paths of the state machine diagrams, as it may
be found as (1) effect on some transition of the sender’s
state machine and (2) as trigger on some transition of the
receiver’s state machine. A sequence diagram is consistent
with the state machine diagrams that are instantiated by
its lifelines if for each lifeline the sequence of received
messages is a path of triggers in the corresponding
state machine. Figure 3 shows a communication scenario
between bob, which is an instance of PhD and cm,
an instance of CM. The communication depicted in the
uppermost diagram of Figure 3 named V0 is as follows.
The sequence of received messages in lifeline bob:PhD
causes the triggers needCoffee → done, which may be
found as path in the state machine PhD, namely Working
→ Drinking → Working.

Consider the versioning scenario depicted in Figure 3.
The uppermost sequence diagram V0 is the head revision
in a versioning repository. Two modelers, let us call
them Harry and Sally, check out this version and start
revising the sequence diagram. Harry adds the message
off to the sequence diagram and commits his new revision
depicted in Vr1 of Figure 3 to the repository. In the
meantime Sally is also working on the sequence diagram.
She adds a sequence of messages for preparing tea after
the existing messages, as shown in Vr2 of Figure 3.
When she commits her work to the repository, a generic
versioning system does not report any conflict, as changes
to multivalued references like occurred when adding new
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Fig. 4: Three time consistent, but not necessarily lifeline conformant, merges.

events to the lifelines are ignored and the modeling
language’s semantics is neglected.

III. Challenge
The challenge to overcome for solving the example
described above is to find a consolidated version, which
contains all original and changed messages and lifelines,
is valid with respect to the tMVML metamodel, and is
correct, i.e., it fulfills the following properties. (1) A
sequence diagram is well-formed, if for each lifeline the
order of events is total. This total order of events per
lifeline imposes an ordering relation for messages. (2) A
sequence diagram is time consistent, if any message m is
received before message n if m has been sent before n
on the same lifeline. (3) A lifeline is conformant with its
state machine, if the sequence of action symbols carried
by the messages received by the lifeline occurs as path
of triggers in the state machine.

A consolidated version should further maintain the
relative ordering of messages in the origin sequence
diagram and in its two revisions. In case messages are
added to the same relative position in both revisions, any
interleaving of those messages is allowed, which is time
consistent and maintains the original ordering. Figure 4
shows three possible orderings for the evolution scenario
depicted in Figure 3. Message off of Vr1 may interleave
the added message sequence of Vr2 at any position, while
the relative position with respect to the original messages
is maintained. However, only the rightmost diagram is
consistent with the state machine. The computational
complexity of finding a consolidated version is thus given
by the exponential number of message orderings and the
lifeline conformance property.

Multi-view model versioning expose new challenges
to existing differencing and merge algorithms, rendering
generic solutions almost impossible. Additional effort is
necessary, as the semantics of the targeted modeling
language must be formalized. However, the strength of
semantics-aware versioning is evident. (1) Conflicts aris-
ing even due to non-overlapping changes are detected if
the lifeline conformance property is not satisfiable and

(2) merge algorithms may provide consolidated versions,
which are correct by construction.

All models and metamodels relevant to the described
example are available for benchmarking purposes in the
conflict lexicon Colex [4].
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