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Abstract—Byzantine Fault Tolerant (BFT) protocols aim to
improve the reliability of distributed systems. They enable
systems to tolerate arbitrary failures in a bounded number of
nodes. BFT protocols are usually proven correct for certain safety
and liveness properties. However, recent studies have shown
that the performance of state-of-the-art BFT protocols decreases
drastically in the presence of even a single malicious node.
This motivates a formal quantitative analysis of BFT protocols
to investigate their performance characteristics under different
scenarios. As BFT protocols are generally large-scale distributed
systems, conventional model checking techniques do not scale.

We present HyPerf, a new hybrid methodogy based on
model checking and simulation techniques for evaluating the
performance of BFT protocols. We build a transition system
corresponding to a BFT protocol and systematically explore the
set of behaviors allowed by the protocol. We associate certain
timing information with different operations in the protocol,
like cryptographic operations and message transmission. After
an elaborate state exploration, we use the time information to
evaluate the performance characteristics of the protocol using
simulation techniques. We integrate our framework in Mace, a
tool for building and verifying distributed systems. We evaluate
the performance of PBFT using our framework. We describe two
different use-cases of our methodology. For the benign operation
of the protocol, we use the time information as random variables
to compute the probability distribution of the execution times. In
the presence of faults, we estimate the worst-case performance
of the protocol for various attacks that can be employed by
malicious nodes. Our results show the importance of hybrid
techniques in systematically analyzing the performance of large-
scale systems.

I. INTRODUCTION

Distributed systems are now increasingly common and often
span across multiple platforms. Malicious attacks, software
errors, and unpredictable network delays in these systems
require complex recovery mechanisms that allow the system
to function correctly. However, it is difficult to also maintain
good performance of the system under these scenarios. For
instance, in July 2008, a corrupted bit caused several hours
of downtime to the Amazon Simple Storage Service (Amazon
S3) [1]. This motivates the need of fault tolerant protocols,
which enable a system to continue its operation even in the
presence of faults. Moreover, it is desired that these protocols
provide high throughput even in the presence of faults.

In this paper, we focus on Byzantine faults, where a faulty
node may behave arbitrarily (even in a malicious manner). The
problem of Byzantine fault tolerance was first formulated by
Leslie Lamport in 1982 [2]. Several Byzantine fault tolerant
(BFT) protocols have been developed in this direction, often

relying on state machine replication, a software technique
where a service is modeled as a state machine and deployed
on several replica servers that aim to execute requests from
different clients in the same order.

BFT protocols have been widely studied in the systems
research community [2], [3], [4], [5], [6], [7], [8]. Generally,
BFT protocols are proved correct with respect to certain qual-
itative safety and liveness properties. For example, a common
safety property specifies that every replica observes the same
total order of client requests. A basic question that arises is
how faults affect the throughput of BFT protocols. Indeed,
Clement et al. [9], [10] empirically show that the performance
of BFT protocols drastically degrades as the number of faults
increases. They conclude that the current state-of-the-art BFT
protocols are dangerously fragile. A single faulty node is
capable of reducing the total system throughput with multiple
orders of magnitude and even causing complete unavailability
of the service. Such performance degradation renders BFT
protocols virtually unusable. These studies motivate a formal
performance analysis of BFT protocols.

Model checking is a common approach for formal analysis
of systems. However, model checking requires a model of the
system, which is often time-consuming to produce and error-
prone. Moreover, the performance characteristics observed on
the model may not accurately represent system performance.
In many cases, model checking does not scale to large systems.
Another common technique for evaluating performance relies
on system-wide simulation, which requires access to the
system, an ability to modify the individual nodes in order
to evaluate performance in different scenarios, and is often
time-consuming. Moreover, it is hard to guide simulation in a
manner that expands the set of observed behaviors. Indeed, it is
often hard to capture corner cases in protocol execution using
simulation techniques. To sum up, while formal techniques
like model checking allow the systematic study of different
scenarios and their effects, simulation based techniques pro-
vide results close to realistic scenarios.

We are inspired by the recent hybrid techniques that have
been developed to complement model checking with various
techniques in order to scale to large systems. For example,
concolic testing [11] mixes symbolic and concrete execution
to scale to large systems. Similarly, Godefroid et al. [12] use
random testing in conjunction with systematic exploration for
verification of C programs.

We present HyPerf (stands for Hybrid Performance eval-
uation) that brings together the systematic state exploration



of model checking, and the ability of simulation techniques
to capture realistic behavior, for quantitative evaluation of
BFT protocols. We first present the theoretical framework
behind HyPerf. Our framework basically defines a transition
system corresponding to a BFT protocol. The transition system
captures the notion of time associated with different operations
in the protocol. We use basic model checking techniques to
systematically explore the set of behaviors of the BFT pro-
tocol. We analyze the set of obtained behaviors using Monte
Carlo techniques [13]. We implement our framework on top
of Mace [14], a toolkit developed for building and verifying
distributed systems. This gives us the benefit of evaluating
the protocol as it is deployed, and eliminates the need of
extracting a model from the protocol (as generally required by
model-checking techniques). We model PBFT [4], a popular
BFT protocol in Mace. We obtain timing information for the
different operations (like message transmissions, cryptography
and request executions) by microbenchmarking. We evaluate
the behavior of the protocol using MaceMC [16], a model
checker for exploring the possible execution paths.

We use our methodology to obtain the response time behav-
ior of BFT protocols under different scenarios: benign case
(where no node is faulty), and cases where different replicas
are faulty. Our results are consistent with those obtained
with a deployed instance of a BFT protocol on a cluster of
nodes. The model checking backend allows us to tune the
different parameters, like the number of paths to be covered.
Moreover, our technique is reasonably fast and allows the
programmers to analyze the performance of their protocols
at design-time. Clearly, our experiments show the importance
of hybrid techniques for performance evaluation of large-scale
systems.

II. THE HYPERF FRAMEWORK

We now provide a brief overview of BFT protocols. Then,
we present our framework, HyPerf, that expresses BFT pro-
tocols and their correctness and quantitative properties. We
gradually develop the framework in three steps. First of all, we
build a framework to reason about common safety and liveness
properties. In the next step, we adapt the framework to reason
about worst-case response time: we add a time represented as
a natural number in every state. In the last step, we represent
time in every state as an expression over random variables.
This gradual buildup of framework is intended to aid the reader
in understanding how different parts of the framework fit in.

A. BFT Protocols.

The problem of Byzantine fault tolerance was first formu-
lated by Leslie Lamport in 1982 [2]. He described the difficulty
of achieving consensus in an environment where nodes can be-
have arbitrarily. There are two basic techniques for providing
Byzantine fault tolerance. The first is state machine replication:
a pessimistic approach where replicas communicate with each
other to agree on a total order before processing clients
requests. The second is an optimistic quorum-based approach,
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Fig. 1. Generic BFT architecture.

where replicas speculatively execute requests from different
clients and rely on versioning to maintain consistency.

In this work, we focus on the more popular state machine
replication approach. State machine replication models the
target service as a state machine that is deployed on several
servers (replicas). This technique ensures robustness to failures
by replicating data, enabling the use of commodity hardware
and lowering the cost for data centers. The purpose of the
replication protocol is to ensure that replicas eventually agree
on a total order in which to process the clients requests, even
in the presence of a bounded number of faulty servers and
an unbounded number of faulty clients. Figure 1 presents the
architecture of a system using a BFT state machine replication
protocol. The BFT protocol lies underneath the application
layer.

Lamport proposed the Paxos [3] protocol for achieving
consensus in the presence of faults. The algorithm ensured
safety in the presence of arbitrary behavior. However, it did
not ensure liveness (according to the FLP impossibility result
[15], it is impossible to achieve both in asynchronous systems,
if nodes can fail). The complexity of Paxos made it difficult
to be accepted by the community, leading to an 8-year stall
between the initial proposal of the algorithm in a technical
report and its publication in 1998.

Research in BFT protocols was boosted by the publication
of PBFT [4], the first protocol to ensure both safety and
liveness as long as the network is not arbitrarily asynchronous
(i.e., delays do not grow exponentially). After the publication
of PBFT, several systems tried to improve the performance
of state machine replication protocols and to make such
techniques practical for real-world use [6], [7], [8], [9]. The
focus of modern BFT protocols has shifted towards high
performance in the absence of faults. Unfortunately, this made
them susceptible to optimizations that degrade performance in
the presence of Byzantine faults.

B. The Generic BFT Model

Our model captures the clients, their requests, replicas,
their states, and the communication (via messages) between
the clients and the replicas that forms the basis of the BFT
protocol.
Clients and replicas. Let C = Cm ∪ Cc be the set of clients,
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(a) First formalism
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(b) Second formalism
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′′〉

(c) Third formalism

Fig. 2. Sample states in different formalisms. In the first formalism, there is no notion of time. In the second, time corresponds to the worst-case execution
time. In the third, time is represented using expressions over random variables.

where Cm is the set of malicious clients and Cc is the set of
correct clients. Let R = Rm∪Rc be the set of replicas, where
Rm is the set of malicious replicas and Rc is the set of correct
replicas. The total number of replicas |R| generally depends
on the number of faulty replicas |Rm|.
System states. The state of the protocol is composed of the
client state, the replica state, and the messages. The state of a
client is captured by the requests it issues and the responses
it receives. The state of a replica consists of the sequence
of requests it has processed so far and a protocol specific
state. The messages capture the information of the source, the
destination, the type of message, and the contents.

Formally, let Req be the set of operations that a client
can request to replicas. Let Resp be the set of responses
that a client can compute based on replies from replicas.
We use the notation resp ∼ req to say that a response
corresponds to a client request. We assume that each client
issues one request at a time; it waits for a response before
sending a new request. A client state is given by a function
σC : C → (Req∪{⊥}×Resp∪{⊥}). A replica state consists
of two components: a sequence of executed requests and a
protocol specific substate. Let Qr be a set of protocol specific
replica substates. Thus, a replica state is given by a function
σR : R → Req∗ × Qr. The messages exchanged between
the nodes in a BFT protocol are protocol-specific. So, in our
generic model, we simply formalize a message m to be of the
form 〈type, src, dest, content〉. Request and reply messages
are the common interface used by BFT protocols to express
client - server interaction. For c ∈ C and r ∈ R, we capture
a request message as 〈Request, c, r, req〉 with req ∈ Reqs
and corresponding reply messages as 〈Reply, r, c, resp〉 with
resp ∈ Resps. A message state σM is a set of messages. We
define Σ = (ΣC × ΣR × ΣM ) as the set of possible system
states, where ΣC is the set of all client states, ΣR is the set
of all replica states, and ΣM is the set of message states.
Transition system. To capture the dynamics of the protocol, we
use the notion of a transition system. We define a transition
system ts = 〈Σ, σ0, δ〉, where Σ is the set of system states,
σ0 is the initial state of the system and δ ⊆ Σ × Σ is the
transition relation between states. We define the initial state
of the system as σ0 = (σ0

C , σ
0
R, σ

0
M ) ∈ Σ. The initial state of

a client is given by σ0
C(c) = (⊥,⊥). Likewise, the initial state

of a replica is given by σ0
R(r) = (ε, q) for some state q ∈ Qr

that represents the initial protocol specific substate. The initial
state of the system does not include any messages, thus we
define σ0

M = ε. Some sample states of the transition system
are shown in Figure 2(a).

C. Correctness Properties

We now describe the common safety and liveness properties
that a BFT protocol needs to satisfy.
• S1. Request/response correspondence. For all correct

clients, the response, when received, corresponds to a
previously issued request.

• S2. State reachability. For all correct replicas, each state
is reachable via a sequence of client requests.

• S3. Linearizability. For all correct replicas, requests are
executed in a sequential order, consistent with the order
seen by the clients.

• L1. Termination. All correct clients eventually receive a
response.

• L2. State agreement. All correct replicas eventually have
the same state.

These properties can be formally expressed in our frame-
work. For example, the safety property S1 states that ∀c ∈
Cc ∀σC ∈ ΣC , σC(c) = (req, resp) · resp =⊥ ∨ resp ∼ req.

D. Augmenting the Model with Time

The generic BFT model allows one to model check BFT
protocols with respect to the safety and liveness properties
presented above. However, the model is agnostic to the passage
of time, and thus cannot be used to evaluate the performance
of BFT protocols. We augment the client and replica states
with a notion of time. We now define client and replica states
as follows. The state of a client is given by a function σC :
C → (Req ∪ {⊥} × Resp ∪ {⊥} × N). Likewise, the state of
a replica is given by a function σR : R→ (Req∗ ×Qr × N).
Indeed, in addition to the earlier formalism, we capture the
local time for each client and replica as part of its respective
state. This is shown in Figure 2(b).

We assume that every client makes exactly one request,
and the request is made at time 0. Moreover, once a client



receives a response, its timestamp does not increase. The
extended model allows us to reason about performance of a
BFT protocol in terms of the time it takes to respond to a
given request. Formally, we have the property S4 that bounds
the completion time of each request issued by a correct client.
• S4. Worst response time. For all correct clients, each

request is completed within a protocol-specific time limit.
Formally, ∀c ∈ Cc,∀σC ∈ ΣC , if σC(c) = (req,⊥, t),
then t < T .

The safety property S4 allows us to capture the worst case
performance of a BFT protocol. However, in an asynchronous
environment, the time taken by individual operations is gen-
erally not bounded, and a probabilistic model to study the
protocol is desirable. Generally, this is achieved by turning the
transition system into a Markov decision process, every each
transition has an associated probability. However, reasoning
about MDPs does not usually scale to large systems. Moreover,
converting a transition system with a continuous notion of time
to an MDP requires to discretize time.

This brings us to a hybrid approach for performance evalua-
tion. We adapt the notion of time in every state to symbolically
capture the passage of time for every client and replica in terms
of individual event durations. We define a set V of random
variables that denote the duration for processing different
events. We define a time expression e using the grammar

e ::= v | e+ e | max(e, e)

where v ∈ V . We denote the set of time expressions as Expr.
We define a partial order ≺ on the set Expr of expressions as
given by the inference rules below.

v ≺ v + v′ v ≺ max(v, v′)

e ≺ e′

e+ e1 ≺ e′ + e1

e ≺ e′ e1 ≺ e
max(e, e1) ≺ max(e′, e1)

To capture these events in the protocol, we now define a
client state as σC : C → (Req ∪ {⊥} × Resp ∪ {⊥} × Expr),
and a replica state as σR : R→ (Req∗×Qr×Expr). The idea
of introducing time expressions in states allows us to capture
time as expressions over random variables, that represent time
required for individual events in the protocol. A sample set of
states is shown in Figure 2(c). The response time of a protocol
can now be studied by observing the time expressions for
the states when the client receives a response for its request.
Instead of a correctness property, we are now able to compute
the response time.
Q1. Response time. Let E be the set of expressions such
that ∀c ∈ Cc,∀σC ∈ SigmaC , if σC(c) = (req, resp, e)
such that resp ∼ req, then e ∈ E. Note that E is a set
of functions of random variables that intuitively represent
the possible timing behaviors of the protocol under different
conditions. In our protocol, we restrict nondeterminism to
the malicious nodes, and thus different values in E represent
different possible behaviors of the malicious nodes. In case

there are no malicious nodes, the set E is a singleton. In
case we have malicious nodes, we can attempt to choose the
worst time expression, that is, the expression e ∈ E such
that for all expressions e′ ∈ E such that e′ 6= e, we have
e′ ≺ e). This would correspond to an adversarial behavior
of the faulty nodes. In our case study of the PBFT protocol,
we are indeed able to find such a worst time expression as
explained in Section IV.

E. The PBFT Protocol

We now illustrate how BFT protocols in the literature
can be specified in our framework. We focus on PBFT, a
Byzantine fault tolerant protocol that re-ignited researchers’
interest in the field by demonstrating that Byzantine fault
tolerance in asynchronous environments does not necessarily
imply impractical performance. PBFT consists of three sub-
protocols: three phase agreement for imposing a total order
among the requests, view change for ensuring progress and
checkpointing for allowing replicas to re-synchronize.

Request Pre-prepare Prepare Commit Reply
Client

Primary

Replica

Replica

Replica

Fig. 3. PBFT: three phase agreement.

As shown in Figure 3, a client requests the execution of
an operation by sending a request message to a distinguished
replica, called the primary. The primary initiates a three-phase
agreement protocol by multicasting pre-prepare messages to
replicas. Upon the arrival of the pre-prepare message, each
replica broadcasts prepare messages to the others. Once a
replica has received 2 · f distinct prepare messages, it enters
the prepared state and broadcasts a commit message. A replica
enters the committed state once it has received 2·f+1 distinct
commit messages. It then executes the operation requested by
the client and sends back a reply message containing the result.
Each client waits for f + 1 replies from different replicas
before accepting a response. The view change sub-protocol
is initiated whenever the primary is suspected to be faulty by
some other replica, preventing the replica from slowing down
the algorithm arbitrarily. Once it receives a request directly
from a client, each replica forwards the request to the primary
and starts a timer. If the timer expires before the completion
of the respective operation, the replica initiates a view change.
If sufficient replicas suspect the primary of being faulty, the
primary is replaced. The checkpointing sub-protocol is used
to maintain replicas in synchrony. We decided to ignore this
sub-protocol in our study.

To ensure liveness, PBFT requires at least 3 · |Rm| + 1
replicas, where |Rm| is the number of malicious replicas to
be tolerated. No such constraint is enforced on the number of
clients.



III. THE HYPERF IMPLEMENTATION

We implement our framework on top of Mace [14], a mature
toolkit for building and verifying distributed systems. In Mace,
systems are modeled using a C++ language extension. The
Mace compiler can automatically generate C++ code from
the model. Thus, HyPerf has the interesting feature that it
evaluates the performance of the real system, rather than
a simplified model. Moreover, this allows the analysis and
design of the protocol to go together.

Models developed in Mace are layers of reactive state
transition systems. This enables model checking for safety
and liveness properties. MaceMC [16] is the model checker
provided within the Mace toolkit; it enables a systematic
verification of Mace-built distributed systems under various
simulated network conditions. MaceMC focuses on finding
liveness bugs and isolating their root cause. It first executes
a search to identify states from which it is likely to find
liveness violations. The user can set the depth of the search
and the number of different execution paths to search. Starting
from the identified states, Mace then performs long random
execution paths to identify these violations and their cause.
Likewise, MaceMC is able to check for violations of the
specified safety properties. We now present our implemen-
tation of HyPerf. First, we identify operations in the protocol
that require a substantial amount of time to complete. Such
operations include message transmissions, cryptography and
request service. We then augment the BFT model by assigning
costs to each identified operation. We use model checking as
a tool to reason about various execution paths, both in benign
and malicious scenarios.

A. Identifying Costly Operations

In a first step towards the evaluation of BFT protocols,
we identified operations that require a substantial amount of
time to finish. Since all operations are in components external
to the protocol, we developed microbenchmarks to obtain
sample execution times. We use this data to estimate the cost
corresponding to different execution paths in the protocol.

We identified three types of performance-relevant operations
within the generic BFT model:
• network operations (i.e., message transmissions),
• cryptography (e.g., using message authentication codes),
• request executions (application dependent).

The timing information for each such operation can be com-
puted during the design phase. Thus, an implementation of the
system is not required to estimate the time duration of each
operation.

We use the Ping network utility to obtain sample values
for message transmission times. Our approach consists of two
steps. First, we estimate the average size of messages based
on their content. Second, we setup multiple Pings between
the nodes in a cluster. We set the payload of Ping to the
estimated message size. To obtain the cost of a one-way
message transmission time, we divide the round-trip samples
by two.

To determine sample values for cryptography operations,
we perform microbenchmarks using existing security libraries.
Most BFT protocols rely on external cryptography libraries to
ensure security. For instance, PBFT relies on the SFS library.

Request service times depend on the application that is
built on top of the BFT protocol. Thus, we sample the target
application to obtain request execution samples.

B. Modeling BFT Protocols

We model BFT protocols using the C++ language extension
provided by Mace. To demonstrate our framework, we develop
a case study based on PBFT [4].

PBFT Service

UDP Protocol

PBFT Sim Application

PBFT Test Driver

Model Checker

Fig. 4. PBFT layered hierarchy.

We modeled PBFT as a hierarchy of services, as shown
in Figure 4. PBFT relies on the UDP transport layer, which
is included in the Mace distribution. We implemented a simu-
lated application (PBFT Sim App) and a test driver (PBFT test
driver) to enable model checking within the Mace framework.
Our model includes two out of the three PBFT sub-protocols:
the three phase-agreement, which accomplishes a total or-
dering of client requests consistent among replicas and the
view change, which ensures progress provided that the current
primary is faulty. To keep the PBFT model accurate, we also
included cryptography (Message Authentication Codes). We
modeled MACs using one boolean value for each replica.

In BFT protocols, nodes are prone to malicious conditions.
We expressed the Byzantine behavior for both replicas and
clients, by making random choices. This enabled us to reason
about the performance of PBFT under malicious conditions
that are likely to occur in real environments. As shown in the
code snippet below, we augmented each branch statement in
the PBFT model with a random condition. We require both
branches to be explored by the model checker.

// non-malicious
if (replies.size()>maxNumMalicious)

collateReplies();

// malicious
val = randint(5);
if (replies.size()>maxNumMalicious || val<2)



collateReplies();

C. Capturing Performance

PBFT was proven to guarantee both safety and liveness
in the presence of a bounded number of faults. However,
in order to achieve liveness, the protocol relies on a weak
synchrony assumption, i.e., the time between the moment a
client sends a request for the first time and the moment it
is able to compute a result is bounded. We used a modified
version of the Mace model checker [17] to prevent irrelevant
reordering of messages. This constraint restricted the search
space to relevant execution paths. The modified model checker
uses a synchronized transport, in which the network delivers
messages in phases, separating each phase by a tick. The use
of ticks also enabled us to avoid the simulated timers offered
by Mace. In our experiments, the simulated timers proved to
be inconsistent among nodes; for instance, a five-second timer
may fire several times on one node before a one-second timer
fires on a different node, leading to several irrelevant execution
paths. Instead, we modeled PBFT’s request and view change
timeouts using counters that decrement during each tick of the
transport.

In a first phase, we assigned fixed time values to each of the
identified operations and used the Mace model checker as a
tool to obtain different execution paths and their corresponding
total time values (as in the second formalism). The result of
this approach is total execution time of each path in the target
protocol. This result is useful in order to find the execution
path that leads to the worst case performance of the protocol.

In the second phase, we assigned symbolic variables to
each significant operation within PBFT, rather than fixed time
values (as in the third formalism). We again used the Mace
model checker, but this time to obtain symbolic expressions
of variables, rather than numerical values. Each symbolic
variable we used has an associated statistical distribution for its
duration (for instance, network delays can be modeled using
the Pareto distribution [18]). This enables us to use statisti-
cal methods to reason about the probabilistic distribution of
execution times. We use Matlab to compute the probability
distributions for such sequences.

The behavior of BFT protocols depends on parameters such
as the number of faults to be tolerated, specific timeouts, etc.
We specify the number of faulty nodes in the BFT protocol.
Model checking a BFT protocol needs additional parameters
such as the number of execution paths to explore, the depth
of the paths, etc. These parameters impact the accuracy and
the speed of the model checking algorithm.

IV. EVALUATION OF PBFT USING HYPERF

We now use HyPerf for a quantitative evaluation of PBFT.
We setup a scenario for at most one malicious server (f = 1).
Thus, we use 3f+1 = 4 replicas. We explored 50,000 different
paths, each consisting of 10,000 steps.

We first identified the set of operations that impact the
performance of the protocol. We used microbenchmarks to
estimate the cost of each operation. We then used model

checking to find possible sequences of events in the protocol.
Based on the obtained operation costs and execution traces,
we compute the expected performance of PBFT under various
conditions. We use HyPerf to predict the performance of
PBFT under different scenarios. In the absence of failures, our
predicted results are close to the actual performance of PBFT
(Figure 8). We compared our estimated values with those we
obtained for a real PBFT deployment in a cluster. We used the
same environment for microbenchmarking the cost of each
operation, as well as for deploying the real implementation
of PBFT. Our prediction matches the real measurements in
both scale (the median values are close) and in shape (the
distributions are also similar).

A. Microbenchmarking

As described in Section III, we first compte the time
required by the time-consuming operations in PBFT: message
transmissions, cryptography operations and request service
times. We obtained samples for message transmission costs
by using the Ping utility. There are several types of messages
within the PBFT protocol: Request, Pre-prepare, Prepare,
Commit and Reply. Based on the C++ headers in the PBFT
source code, we estimate an average message size of 150
bytes. We set the Ping payload to to the average size of PBFT
messages (150 bytes). Figure 5(a) shows the distribution of
message transmission times that we obtained by performing
Pings between the nodes of our private cluster.

Figure 5(b) presents the distribution of execution times for
cryptography operations. PBFT uses the SFS cryptography
library to implement security. We know the size of the mes-
sages that are authenticated from the description of the PBFT
protocol. Thus we were able to perform microbenchmarking
to obtain sample time values for the cryptography operations.

We show the distribution of request service times in Figure
5(c). Requests are specific to the application that runs above
the BFT layer. For PBFT, we first developed a dummy
application that reads from a remote file on each request. We
then wrote an application-specific test driver and obtained the
time samples for the request.

B. Evaluation

We now present the results we obtained in our evaluation
of PBFT. We show how our framework can be used to
estimate the performance of PBFT under benign and malicious
conditions. In a first step, we reason about the expected
behavior of the protocol under benign conditions. We compare
our results to the measurements we perform on the real PBFT
implementation. We then estimate the performance of PBFT
under malicious conditions (for example, one faulty replica).
Benign case. In this scenario, we ran the model checker with-
out any malicious nodes, obtaining a single time expression.

vreq+vmac+vprep+max(vpre, vpre)+max(vcom, vcom, vcom)+

vwr + max(vrep, vrep)

This sequence corresponds to the “common case” of PBFT
(see Figure 3). The vreq event corresponds to the client sending
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Fig. 5. Microbenchmark results for costly PBFT operations

a request to the primary. Upon the arrival of a request, the
primary checks its Message Authentication Code (vmac) and
broadcasts a Pre-prepare message (vprep) to other replicas.
Each replica broadcasts a Prepare message (vprep) as soon
as it receives the Pre-prepare. Each replica then waits for 2f
different Prepare messages. The waiting time corresponds to
the maximum cost among Prepare messages: max(vpre, vpre).
Once the waiting time is over, each replica broadcasts a
Commit message. Likewise, each replica waits for 2f + 1
Commits to arrive, for a time equal to max(vcom, vcom, vcom).
Then, replicas execute the operation, for example vwr, and
send replies to the client. The client is able to compute a
response once it has received f +1 agreeing replies. The time
to wait for these replies to arrive is max(vrep, vrep).

We computed the expected performance distribution of
PBFT using the data obtained from our microbenchmarks. We
compared the results with the actual measured performance
of PBFT. Figure 8(a) shows that the prediction is close to
the actual values in both scale and shape. We show both the
raw distributions, as well as a box plot comparison. The box
plot shows the median values (horizontal red line), 25 and 75
percentiles (solid box), 5 and 95 percentiles (dashed lines) and
outliers (red points).

Surprisingly, the prediction is slightly more pessimistic than
the real case. We expected our prediction to be slightly more
optimistic, since we only modeled the execution time of a
subset of the total PBFT code. Possible explanations for this
result are OS optimizations that affect the real code (e.g.,
caching, buffering) or the accuracy of the timing measurements
we used in the microbenchmarks (measuring very small events
is more inaccurate than measuring the total request time).
Malicious case. There are two possible malicious scenarios:
faulty primary or faulty backup (i.e., non-primary replica).
When the primary exhibited malicious behavior, the model
checker produced 42 possible time expressions. We parse the
time expressions according to the precedence relation in our
framework. We get a worst possible event sequence as follows.

vreq+vmac+vrep+max(vpre, vpre, vpre)+vvc+vmac+vprep+

max(vpre, vpre, vpre) + max(vcom, vcom, vcom)+

vwr + max(vrep, vrep, vrep)

In this scenario, the malicious primary does not send the Pre-
prepare message to all replicas, thus inhibiting the execution
of the request. The replicas detect the faulty primary (a view
change timer, denoted by vvc, expires) and initiate the view
change protocol. The primary is changed and the protocol can
then resume normal execution. We used this path to compute
the distribution of execution times, as shown in Figure 6.
The total execution times are significantly larger than in the
common case, averaging around 5 seconds. This is due to the
view change timer, which is set to 5 seconds, as for the default
PBFT deployment.

For the scenario with one malicious replica (not the pri-
mary), the model checker produced 3 possible sequence of
events. We identified the worst by taking into account the total
execution times.

vreq+vmac+vprep+max(vpre, vpre)+max(vcom, vcom, vcom)+

vwr + max(vrep, vrep)

We present the distribution of execution times in the presence
of one malicious replica in Figure 7. It can be seen that
a malicious replica does not have a large impact on the
performance of PBFT. The total execution times are close to
the “common case”.
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Fig. 6. Predicted execution times for a scenario with 1 malicious replica
(primary).

V. RELATED WORK

A number of modeling techniques for analyzing perfor-
mance of distributed systems have been proposed in the litera-
ture. Petri nets [19] and their extensions, timed petri nets [20]
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(a) Response time predicted with HyPerf
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(b) Response time on a real PBFT system
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Fig. 8. Comparison with real data
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Fig. 7. Predicted execution times for a scenario with 1 malicious replica
(non-primary).

and stochastic petri nets [21] have been applied to analyze
various properties of distributed systems. Process calculi have
also been used in performance evaluation, most notably as
PEPA [22], [23]. Tools like PRISM [24], [25] have been
developed and extensively used to verify probabilistic systems.
Specifically, PRISM has been used to verify randomized

Byzantine agreement [26]. All these verification techniques
rely on extracting a model from the real system. This often
requires certain assumptions, needs manual intervention, and
can be error-prone. Moreover, these techniques are geared
towards rigorous analysis of small systems, and thus are unable
to scale to large distributed systems.

For these reasons, the behavior of BFT protocols (and in
general large-scale distributed systems) is usually analyzed
by simulation. Models of BFT protocols have been developed
and deployed in simulation environments that emulate various
network conditions. Also, real BFT implementations have been
injected with faults while running on machine clusters. Several
authors use model checking as a tool to reason about their
BFT protocols. Singh et al. [5] built BFTSim, a simulation
environment that allows evaluating BFT protocols under var-
ious network conditions. Protocols are modeled using a high
level declarative language and then released in a simulated
environment that allows the emulation of various network
conditions such as message loss, message delays, etc. BFTSim
is focused on analyzing the network characteristics for the
protocol. We, on the other hand, focus on exploring various



execution paths through the protocol itself and also assess the
impact of malicious nodes on performance.

Clement et al. [9] perform an empirical analysis of the
state-of-the-art BFT protocols under various scenarios. They
discover that all protocols are severely impacted by malicious
nodes; for every studied protocol the authors produce at least
one scenario that causes the performance to drop to zero.
The authors propose a new approach towards building BFT
protocols, rather than an approach that discovers such faults
automatically. Our work complements that of Clement et al. by
proposing a framework that can help BFT developers evaluate
the expected performance of their protocol before they actually
implement it.

Killian et al. extend their Mace model checker [16] by
adding a technique to automatically find abnormally long
executions. The detection algorithm works in two phases: a
training phase, in which the algorithm explores different exe-
cutions of the target protocol in order to find the “average” exe-
cution length, and an exploration phase, in which the algorithm
searches for executions that are abnormally long. The tool also
provides anomaly analysis that compares abnormal executions
with average executions, trying to pinpoint the divergence
point of the protocol execution and help the developer locate
the bug. Our framework differs in two significant ways: first,
we also model malicious nodes in the protocol and asses their
impact on performance; second, our framework produces a
statistical distribution of the protocol execution times, helping
the developer estimate the expected performance of their
algorithm, potentially filtering out executions that are very
long, but have an extremely low probability of occurring (e.g.,
a bit corruption bypassing the checksum).

Guerraoui et al. [27] provide basic building blocks for
developing BFT protocols, thus reducing the developer effort
for both verification and implementation. They showed how
state-of-the-art and new BFT protocols can be designed using
their abstraction. They used model checking to prove the
formal correctness of their proposed abstraction.

We believe that our work fits well with these existing tools
and approaches. Formal techniques like model checking usu-
ally target correctness properties in small-scale systems. The
obvious benefit of these is their systematic approach. On the
other side of the spectrum, simulation techniques provide in-
depth understanding of the actual large-scale systems. Our goal
with HyPerf is to develop techniques that bring together the
advantages of these approaches. We exploit formal techniques
in capturing possible scenarios and reducing system behavior
to mathematical expressions over individual events. We use
simulation to capture the behavior of these events and compute
performance characteristics.

VI. CONCLUSION

We presented HyPerf, an approach that combines systematic
state exploration and simulation techniques to analyze the per-
formance of distributed systems. In particular, we developed a
case study for PBFT, a practical BFT state machine replication
protocol, and analyzed its response time. We showed that

HyPerf allows us to reason about real systems at design
time, making programmers aware of the weaknesses of their
protocol before wide-scale deployment. We compared the
predictions obtained with HyPerf to the real performance of
PBFT and found that our approach can successfully estimate
both the scale and the statistical distribution of execution
times.

As future work, we plan to extend the methodology pre-
sented in this paper to general distributed systems for analyz-
ing performance properties.
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