Obliging Games

Krishnendu ChatterjéeFlorian Horrl-2, and Christof Loding

L IST Austria (Institute of Science and Technology Austria)
2 CNRS, LIAFA, Université Paris 7, France
3 RWTH Aachen, Germany
krish.chat@st.ac.at; horn@iafa.jussieu.fr;
| oedi ng@ nf or mati k. rwt h-aachen. de

Abstract. Graph games of infinite length provide a natural model for open re-
active systems: one player (Eve) represents the controller and theptalyer
(Adam) represents the environment. The evolution of the system deperttie
decisions of both players. The specification for the system is usually giv@n
w-regular languagé. over paths and Eve’s goal is to ensure that the play belongs
to L irrespective of Adam’s behaviour.

The classical notion of winning strategies fails to capture several integeste:
narios. For example, strong fairness (Streett) conditions are spdwjfeedumber

of request-grant pairs and require every pair that is requested ihfioften to

be granted infinitely often: Eve might win just by preventing Adam from mak
ing any new request, but a “better” strategy would allow Adam to make ay ma
requests as possible and still ensure fairness.

To address such questions, we introduce the notioabtifjing games, where
Eve has to ensure a strong conditdnwhile always allowing Adam to satisfy

a weak condition?. We present a linear time reduction of obliging games with
two Muller conditions® and¥ to classical Muller games. We consider obliging
Streett games and show they areN®-complete, and show a natural quantita-
tive optimisation problem for obliging Streett games isHNP. We also show
how obliging games can provide new and interesting semantics for muleplay
games.

1 Introduction

Games played on graphs provide a natural theoretical model to study prob
lems in verification, such as synthesis of reactive systems [PR89,RW&7], s
thesis of systems from specifications [BL69,Chu62], andalculus model-
checking [Koz83,Sti01].

The vertices of the graph represent the states of the system, the eplges re
resent transitions, the paths represent behaviours, and the plyerar{d the
opponent Adam) represent the controller for the system and its envirdnme
respectively. The goal of the controller is to satisfy a specification (gldsiet
of behaviours) irrespective of the way the environment behavesytithesis
of such a controller corresponds to the construction of a winning stratdgg
graph game.



The class ofu-regular objectives provide a robust specification language
to express properties that arise in verification and synthesis of reastsre
tems [Tho97]. Muller and parity specifications are two canonical waysdo-sp
ify w-regular objectives. In the classical study of graph games avithgular
objectives, the input is a graph garmgeand anw-regular objectiveb, and the
question is whether there is a winning strategy for a player (Eve) thatessu
that® is satisfied irrespective of the strategy of the other player (Adam).

A specificationd® often consists of two parts: an assumpt@®g and a guar-
anteed and the specification requirdsy — @. The specificatiorb 4 typ-
ically represents the environment assumption under which the guaréptee
needs to be ensured. A winning strategydomay vacuously satisfg by vio-
lating @ 4, whereas a better strategy would ensure the “strong” specificétion
and allow the “weak” specificatio® 4. For example, consider a Streett (fair-
ness) condition: the fairness condition consists of a sgtrefjuest-grant pairs,
and requires that every request that appears infinitely often, mustanéed
infinitely often. A winning strategy may satisfy the fairness conditions by not
allowing requests to happen, whereas a better strategy would be as falems
sures the strong specification that asks for the satisfaction of the saiongds
specification, and allows for the corresponding weak specificationdhjaires
that grants are allowed to happen infinitely often.

To address the question above we consider a very general framefvork
games with two different levels of specifications: a strong énend a weak
one¥ which are, in general, independent of each other. A “gracious” gyate
for Eve mustensurethe strong specification (in the classical sense), almv
the weak one: Adam has the choice to satigfyWe refer to them asbliging
gamesIn the important case of fairness specifications, the weak specification
can be self-derived from the fairness specification, and the wealifispéon
requires that the requests are allowed to happen infinitely often. Thémditn
of our work is as follows:

1. We present a linear time reduction of obliging games (with two Muller con-
ditions) to classical games (with a single Muller condition) such that Eve has
a winning strategy in the classical game if, and only if, she has a gracious
strategy in the obliging game.

2. We present a detailed analysis of the reduction and memory requiremnent f
obliging games when both specifications are given as parity conditions.

3. Inthe case of fairness specifications (Streett-generalized Blctitoms),
we show that the problem of the existence of a gracious strategy for Eve is
co-NP complete.
We also study a quantitative optimisation version of this problem and show
that it belongs td-NP (functionalNP).



4. We also show how our concepts can be extended to multi-player games,
leading to new and interesting semantics in the context of verification.
Related workOur notion of “gracious strategy” can be likened to “permissive
strategies”, which allow as many behaviours as possible) [BJW02].JWE]
it has been shown that most general strategies can be constructedrasdfety
conditions, and for parity objectives a strategy that captures behavfcalt
memoryless winning strategies was presented. Our work is differentraseu
jectives are more general (Muller), and the goal is to construct a sjrétag
allows a given objective. Our work is also related to multi-player games on
graphs and Nash equilibria [CMJ04,UmmO08]. However in Nash equilibrigther
are no two levels of specifications as considered in obliging games.

2 Definitions

Arenas. A two-player game arena is a triple (V, V,, E) where(V, E) is a
finite directed graph without deadlocks (each vertex has at least dgeiog
edge) and/; is a subset o/ calledEve’s verticesThe vertices irv \ V; are
Adam’s verticesind are usually denoted By;.

Plays and StrategiesA play p on the aren& is a (possibly infinite) sequence
p1p2 ... of vertices such that for all < |p|, we have(p;, p;+1) € E. Thelimit
vertices ofp, denoted byinf(p), are the vertices occurring infinitely often in
Inf(p) = {q | 3%, pi = q}.

A strategyof Eve on the arenal is a functions from V*V;, to V' such that
forallz € V* andforallv € V;,, we havgv, o(xzv)) € E. Aplay pis consistent
with o (orac-play) if forall i < |p|, p; € Vo = pis1 = o(p1...p;).

Strategies can also be definedstrategies with memoryn this caseg is a
tuple (M, mg, 0", o™), wherelM is the (possibly infinite) set ahemory states
my is the initial memory conteng® : (E x M) — M is thememory update
function, ands™ : (V x M) — V is thenext-movéunction. The memory-update
function can naturally be extended from edges to finite sequencestimfeger
ol (vovr - - vy, m) ismif i = 0 ando™((vi—1, v;), oY (vovr - - - vi—1,m)) if i >
1. Using this definition, the next move determineddyor a playxzv € V*V,
is o™ (v,m), wherem = o% (zv,mg). A strategy isfinite-memoryif M is a
finite set, andnemorylesd M is a singleton. Adam’s strategies are defined in
a similar way.

Muller conditions. A I'-colouring~ of an arenais a partial function of the
edges ofA to an arbitrary set of colourE. We use partial functions here be-
cause this sometimes eases the specification of the winning conditions. How-
ever, for formal reasons, we sometimes use a coledthat corresponds to the



undefined value. This colour is not considered when building the limit set of
colour sequence (hence the limit set can be empty).
A Muller condition® on I is a subset 02", and a play of A satisfiesp if,
and only if,Inf(y(p)) € @. Here,y(p) corresponds to the sequence of colours
obtained by applyingy to the edges op. This is a finite or infinite sequence
over[’, or an infinite sequence ovéru {—} using the above convention.
We also consider the usual special cases of Muller conditions (recali¢éha
allow partial colourings):
— theBuchi conditionis the conditior{{T},{L, T}}on{Ll, T};
— theco-Bichi conditionis the condition{®, {T}} on{L, T};

— the k-generalised Buchi conditionis the condition {{1,...,k}} on
{1,...,k}
— the k-parity conditionis the condition o0, ...,k — 1} containing all and

only the subsets whose minimum is even;

— ak-Streettcondition onl” is given by a se{ (R, G1), ..., (Rk, Gk))} of k
request-grant pairs of subsetsiof It contains all and only the subsets that
for each: either intersecty; or do not interseck;.

In the course of our proofs, it is often useful to consider booleanabipas
on Muller conditions, in which we interpret negation as complementation and
conjunction as Cartesian productdgifand¥ are conditions o andly, then
& AW is the condition o x Iy which contains all and only the sets whose
projection on the first component belongsd&pand projection on the second
component belongs t&.

Notice that colourings arpartial functions, so their product may return a
colour for only one of the components. We then use the neutral coleufor
the undefined component.

Classical and obliging gamesA classical Muller game~ on I" is a triple
(A,~,®) whereA is an arenay is a I'-colouring of A, and® —the winning
condition— is a Muller condition od”. An infinite playp of A is winning for
Eve if it satisfiesd. A strategyo is uniformly winning (resp. winning from a
vertexq) for Eve if anyo-play (resp. any-play starting ing) is winning for
her. A vertexq is winning for Eve if she has a winning strategy framThe
winning region of Eve is the set of vertices winning for her. Adam’s winning
plays, strategies, vertices, and regions are defined likewise, exetptplay is
winning for Adam if it does not satisfg.
An obliging game’ is a tuple(A4, v, @, v, ¥), WhereA is an arenayg is

a I'g-colouring,® —the strongcondition— is a Muller condition od'g, vy IS
a I'y-colouring, and? — theweakcondition— is a Muller condition oy, A
uniformly gracious strategy for Eveis such that:

— every infinitec-play p satisfiesp;



— for any finiteo-play z, there is an infiniter-play p satisfying? such that:
is a prefix ofp .

So, Eve has tallow Adam to build a play satisfying at any position, regard-
less of what he previously did. However, she does not needgare? if Adam
is not willing to cooperate. Notice that there is no dual notion of spoiling strat-
egy for Adam. In particular, the notion of “determinacy” does not make&sén
obliging games, as Adam cannot demonstrate Eve's lack of grace withla sing
strategy.

We refer to obliging games by the names of the two conditions, with the
strong condition first: for example, a parity/Buchi obliging game is an obliging
gameG = (4,73, P, v, ¥), Whered is a parity and? is a Biichi condition.

Example 1.Consider the parity/parity obliging game in Figure 1. The pairs de-
fine the colours of the edge, the first component corresponding to thagstr
condition &) and the second component to the weak condition (

In order to satisfy?, a play has to either take the ed@g, ¢¢) infinitely

often, or the edgéys, ¢s) infinitely often and the edggy,, ¢2) finitely often. To
satisfy ¥, an infinite play has to take the ed¢g, ¢2) infinitely often. In this
game Eve has to behave differently depending on whether Adam moygs to
or g4. If the token reachegs coming fromgy, then Eve can safely move tg.
If the game reacheg coming fromgs, then she can first complete the cycle
G6q549sqs and then move tgs and then tayy. This strategy can be implemented
using memory of siz8 and it is a gracious strategy since each path satigfies
and Adam can produce a play satisfyi#idy always moving tay.

It is not difficult to observe that there is no gracious strategy for Eve with
memory of size two for this game. O

q2

(1,2)

qr

Fig. 1. A parity/parity obliging game



3 Reducing obliging games to classical games

In this section we provide a general method to reduce obliging games to clas-
sical games with a single winning condition. The underlying idea is based on
the construction of merciful strategies from [BSL04]: we constructaeraled
game graph in which Adam decides either to choose his next move himself or to
leave this choice to Eve. If he always leaves the choice to Eve from soimie po
onwards, then Eve has to prove that Adam indeed has the possibility toy satisf
the weak condition. Consequently, the winning condition for Eve in the new
game is the strong condition from the obliging game in conjunction with the
weak condition in the case that Adam only finitely often makes his own choice.

Note that in the case that Eve has to satisfy the weak condition, the game
remains in a subarena that is completely controlled by Eve. We use this fact
by allowing to simplify the weak condition by means of non-deterministic
automata. The required technical framework is defined below.

We usev-automata with an acceptance condition specified on the transitions
of the automaton rather than on the states. In our settingramomaton is of
the formM = (Q, X, ¢in, A,7r,T), whereQ is a finite set of states, is the
input alphabetg;, € Q is the initial state A C Q x X x @ is the transition
relation,yy : A — I'r is a (partial) colouring function, aril is an acceptance
condition overy similar to the winning conditions defined for games. We write
transitions(q, a, r) with v ((¢, a,r)) = casq =% r.

A run of M on an infinite worda: € X% is an infinite sequencé =
q0q1q2 - - - Of states such thap = g¢;,, and(g;, a(i), gi+1) € A for eachi > 0.
We define the infinite colour sequence inducedhbgnd( as the sequence ob-
tained by applyingyr to each transition:

Yr(a, ¢) = yr((go, (0), g1))yr (g1, (1), ¢2))vr (g2, (2), g3)) - - -

The run¢ on « is accepting ifyr(«, ¢) satisfies the acceptance condition. The
languagel.(M) accepted byM is the set of all infinite words on whicM has
an accepting run.

As usual, we call an automaton deterministic if for each pair of gtate)
and eaclu € X there is at most one transitign, a,r) € A.

We are interested in automata accepting languages that correspond to win-
ning conditions. Given a winning conditiah over I '3, we define the language
Lg C (I's U{—})“ as the set of all infinite sequences that sat#&fyecall that
“—"is a neutral colour representing the undefined value and is not coadide
for evaluating the winning condition).

Lemma?2. LetG = (A,vg,P,vw,¥) be an obliging game with arend =
(V,E), and letM = (Q, 'y, ¢in, A,vr, 1) be anw-automaton accepting.y.



There isagamé&’ = (A’,v4, A) and a mapping : V — V' with the following
properties: (1)A = & A (T Vv B) for a Buchi conditionB; (2) for each vertex
v € V, Eve has a gracious strategy framin G if, and only if, she has a winning
strategy from the vertex(v) in G’; and (3) from a winning strategy for Eve in
G’ from .(v) with memory of size one can construct a gracious strategy for
Eve inG from v with memory of size - |Q| - n.

Proof. To simplify the reduction, we assume without loss of generality that the
arena is alternating.e. E C (Vo x Vo) U (Vg x V4).

We construct?’ in such a way that, at any time in a play, Adam can ask Eve
to show a path that satisfigs This is realised by introducing a second copy of
G in which all vertices belong to Eve. In this copy we additionally keep track of
the states of the automatdvl recognising?.

If Adam chooses to switch to this copy, Eve makes the choices on behalf of
Adam. Consequently, if from some point onward Adam decides to always le
his choices to Eve, the resulting play has to satBfgnd¥. Otherwise, it is
sufficient for Eve to satisf$p. The Bichi condition is used to distinguish these
two cases. Whethe¥ is satisfied can be decided using the condifibon the
state sequence g#1.

Formally, the gam&’ = (A’,v,4, A) and the mapping are constructed as
follows:

— The winning condition ist = ¢ A (T v B) whereB is a Biichi condition.
— The arenad’ = (V’/,V/, E’) and the colouringy, of E’ are defined as
follows:
o V' = (V, x{play}) U (Vg x {choose} x Q) U (V x {show} x Q);
o V! = (Vo x{play}) U (V x {show} x Q);
e Let v andv be vertices inV; ¢ andr be states inY; anda, b, ¢ be

colours inl's, I'y, I’y such thatu @b inE andq b, 1in A. Then

the following edges belong tb’:

u € Vs (u,play) Lo, (v, choose, qi)
u € Vg : (u, choose, q) LN (v, play)

(u, choose, q) L), (u, show, q)
u € Vs (u, show,q) Lo, (v, choose, r)

u € Vg : (u, show, q) {aed), (v, show, r)
— The mapping: maps eachv € V, to (v, play) and eachv € V to
(v, choose, qiy,).
A schematic view of the construction is shown in Figure 2. We refer to the
nodes fromV, x {play} as the play part of the game, the nodes fromx



Vo x {play} Vo x {choose} x Q V x {show} x Q

=

play choose show

Fig. 2. Schematic view of the reduction from Lemma 2

{show} x @ as the show part, and the nodes frdf x {choose} x @ as the
choice part.

We start by showing that a gracious strategyor Eve in the obliging
game(G can be used to define a winning strategy for EveGin Each play
P in G’ naturally corresponds to a playin G that is obtained by removing
the vertices of the typév, show, ¢q) for v € V5 and then projecting away the
{play, show, choose} and the@) components from the vertices. Let us denote
this operation bylel, i.e.,p = del(p’).

The winning strategy of Eve 6’ is defined as follows. For a finite play
that ends in a node of the for(u, play) with « € V,, Eve looks at the play
del(z") in G, checks which movéu, v) she would have made accordingdp
and then moves t(w, choose, q;,) In G-

If the playz’ in G’ enters the show part in a node, show, q;,,) for the first
time after having been in the play part, then Eve considers theiptaylel (z")
in G. Sinceo is a gracious strategy, there is a possible continuatiohz such
thatzp is ao-play satisfying?. In particular, sinceZ is a Muller condition,p
satisfies? and there is an accepting rgrof M on p. Eve storeg and( in her
memory for the strategy’ and now moves fronfu, show, q;,,) according top
for the first component, and according¢tdor the third component.

If the play 2’ in G’ is in a node(u, show,q) such that Eve has already
stored some and(¢ in her memory as described above, then she simply moves
according tgp and(: she checks at which position in the play she has stpred
and(, which part ofp and¢ she has already reproduced since then, and makes
the corresponding next move to reproduce one more stg@oé(.

If Adam at some point decides to enter the play part, i.e., to move to a vertex
from V, x {play}, then Eve erasgsand( from her memory.

If " is an infinite play according to this strategy, then it certainly satidfies
becauselel(n’) is ac-play and thel’s sequence of’ corresponds to the one of
del(") except for some insertions of the neutral coleurFurthermore, either
Adam infinitely often moves to a vertex from, x {play}, in which case the



Biichi conditionB is satisfied, or from some point onward Eve simulatesnd

¢ to infinity, yielding a play inG’ that satisfie€” because’ satisfiesl". This
shows thatr’ is winning and hence we have defined a winning strategy for Eve,
as desired.

For the other direction it suffices to show the third claim of the lemma since
the existence of a winning strategy for Eve @i implies the existence of a
finite-memory winning strategy. L&t\, my, <™, ¢*) be a winning strategy for
Eve inG’. We define a gracious strate@{p, s} x Q x M, (p, ¢in, mo), o™, ")
for Eve inG. This strategy distinguishes two cases to decide whether tg*use
as defined on thelay vertices or on thehow vertices. These two cases depend
on the behaviour of Adam. If Adam makes a movedrfrom a vertexv that
corresponds to the move of from the verteXv, show) in G', theno™ updates
the first component of the memorydoi.e.,o™ starts simulating™ as if the play
is in theshow part of G’. If Adam makes a move that is not of this kind, theh
updates the first component of the memorptands™ simulates the behaviour
of ¢® on theplay part of G’.

We first give the definition of the next move functier, which is quite
straightforward:

o™(u, (P, gin, m)) = v With ¢*((u, play), m) = (v, play, qin),
o™(u, (s,q,m)) = v if *((u, show,q),m) = (v, play,q’") for someq’.

The definition of the memory update functiehis a bit more involved since
we have to distinguish the different behaviours of player 1 as explainexka
Below, we define the update of the memory for a move fromo v in G for
different memory contents. i € V,, we assume that is the vertex that is
chosen by the next move functier? because otherwise the move framno v
cannot occur in a play according to the strategy.

(i) If u e V;,, thena®(u, (P, ¢in, m) ,v) = (P, gin, m’) with

m' = 6*((u, play), m, (v, choose, gin))

ando®(u, (s,q,m),v) = (p, ¢, m') with

m' = ¢"((u, show, q),m, (v, choose,q))
and¢™((u, show, q),m) = (v, choose,q') (here we use the assumption
thato™(u, (s, q, m)) = v, i.e.,v is the target of the next move function).
(i) If v € Vg and<¢™((u, show,q),s"((u, choose, q), m, (u, show,q))) =
(v, show, q'), thena®(u, (X,q,m) ,v) = (s,q,m') with

!/

m' = ¢} ((u, play, q)(u, show, q)(v, show, q'), m)



forall x € {p,s}. This is the case where the move franto v of Adam in
G corresponds to the move that Eve would have made in his plaGé in
To obtainm’ we look at how the memory would have evolvedihin the
move sequence in which Adam gives the choice to Eve.

(i) If v € Vg and<¢™((u, show,q),s*((u, choose,q), m, (u, show,q))) =
(v, show,q') for somev’ # v, theno®(u, (X,q,m),v) = (P, qin, m)
with

m' = ¢*((u, choose, q), m, (v, play))

for all x € {p,s}. This is the case where Adam makes a choice different
from the one that Eve would have made on his behat¥in
We now show that this strategy is indeed graciou&'ifrrom the definition
of o™ ando™ one can see that for evesy-play p there exists a correspondigty
play o’ that is obtained fronplay by inserting appropriate vertices from, x
{show} x @ at those positions where" updates the first component of the
memory tos, i.e., if (ii) in the definition ofs" is applied.
To formalize this lep = vgvivs - - - be ac™-play and let

(X0, 90, mo) (X1,q1,m1) (X2, g2, m2) - - - € ({P,S} x Q@ x M)¥

be the corresponding sequence of memory contents accorditig to

Similar to the operatiordel from the first implication of the proof we now
define an operatiofns that transformg into a corresponding play based on the
sequence of memory contents. By abuse of notation we also define tree oper
tion ins to work on tuples of nodes by inserting the necessary information (we
assume for simplicity that the play startship):

ins(p) = (vo, play)ins(vy, v1)ins(vy, vy)ins(ve, vs) - - -
with

(’U,-H,play) if Xi+1 =P andvi“ e Vs,
ins(vi, vit1) = (Vit1, choose, gi+1) if v;41 € Vg,
(vi, show, ;) (Viy1, show, giy1) If 2341 = s andviyy € Vs.

Now one can verify that a-play p in G is transformed byins into ac-play p’

in G’. Thereforep satisfiesp because the colour sequences frbmof p and

o' are the same except for some insertions of the neutral celoBurthermore,

at each position of a play i/, Adam has the possibility to move so that Eve
updates her memory content to an element with the first component: for a
o-play z in G Adam checks what would have been the move of Eve according
to ¢ in G’ for the playins(xz) extended by Adam’s move to the show part of
the game. If Adam always copies thes@oves toG from some point onwards,



then the resulting play satisfies? becausens(p) is as-play in G’ that does
visit V, x {play} only finitely often and hence satisfi&s This means that the
simulated run ofM on the play is accepting and therefore the corresponding
play in GG satisfieal. This shows that is indeed a gracious strategy. O

Lemma 2 provides a reduction of obliging games to standard games. This
notion is formalised as follows. We say that an obliging garean be reduced
to a standard gam@’ with memorym if:

1. there is a mappingfrom the vertices of~ to the vertices ofZ’ such that
for each vertex of G Eve has a gracious strategy franin G if, and only
if, Eve has a winning strategy fronfv) in G’;

2. given a winning strategy for Eve fromfv) in G’ with memory of sizen,
one can compute a gracious strategy for Eve from G with memory of
sizem - n.

We also use this notion in connection with classes of games. AKlaggames
can be reduced to a claks of games with memory if each game= in K can
be reduced to a gam& in K’ with memorym. The time complexity of such a
reduction is the time needed to computefrom G, to compute the mapping
and to compute the strategy@from the strategy ir’.

We can now instantiate Lemma 2 for several types of obliging games to
obtain results on their complexity. The first instantiation is for general Muller
conditions using the fact that the winning sequences for a conditioan be
recognised by a one stateautomaton which itself uses the conditién

Theorem 3. There is a linear time reduction with memadryrom &/¥ obliging
games to standar@® A (¥ Vv B))) games for a Buchi conditioB.

The point of using a non-deterministicautomaton in the formulation of
Lemma 2 is illustrated by the following result.

Theorem 4. There is a polynomial time reduction with memary + 1)k from
2k-parity/2¢-parity obliging games to standar@k + 2)-parity games.

Proof. We apply Lemma 2 with a Bichi automaton accepting for the 2/¢-
parity condition?. Such a Buchi automaton is easily constructed uging
1) states. On the first state the automaton loops and outiptits each input
priority. Using the othe¥ states the automaton can guess at any point2hat
is the minimal priority which appears infinitely often in the input sequence.
It moves to staté and outputsT whenever priority2i; appears on the input.
For greater priorities it outputs, and for priorities smaller tha2i there is no
transition. One easily verifies that this automaton accépts

Lemma 2 yields a reduction with memay/ + 1) to a Qk-parity A Buchi)
game (using the fact that a disjunction of two Bichi conditions is equivalent



to a single Bichi condition). Analysing the Zielonka tree [Zie98,DJW97] of
a (2k-parity A Bichi) condition shows that it hals leafs and the technique
from [DJW97] gives a reduction tBk + 2-parity game with memory. The
composition of these two reductions gives the claimed reduction. One can note
that this proof also works if the weak condition is a Rabin condition Wjthirs.

O

Since parity games are determined with memoryless strategies (see, e.g.,
[Tho97] or [Zie98]), Theorem 4 directly gives an upper bound onntiggnory
required for a gracious strategy in parity/parity obliging games.

Corollary 5. If Eve has a gracious strategy in Z-parity/2¢-parity obliging
game, then she has a gracious strategy with memory of size aR(dostl ).

In the cas€ = 1, we have rather tight lower bound for the required memory.
Indeed, it is possible to construct2&-parity/Buchi obliging game where Eve
needsk memory states. The cage= 6 is depicted in Figure 3 (in order to
improve readability, there are some vertices of Adam from where two edges
lead to the same target).

Eve has a gracious strategy with
memory states that works as follows: if
Adam just playe@si, she play2i+1; oth-
erwise, she play8(k — 1). This strategy
clearly ensures the parity condition. Fur-
thermore, Adam can get an infinite num-
ber of visits to theT edge, by always an-
swering2(i — 1) to 2i + 1.

There is no gracious strategy for Eve
with less thark states: as there akesuc-
cessors of the central vertex, one of them
is never visited. Thus, Eve can ultimately
not propose the lower ones safely, and either does not guarantearityecpn-
dition or eventually forbids the Blichi condition.

Fig. 3. At least6 memory states

4 Obliging Streett games

Streett games are a very natural setting for obligingness questiongdinde
the Streett condition allows Eve to win by either granting requests or denying
Adam the possibility to make them. It is thus natural to consid&treettk-
generalised Buchi objectives, where the objectives of the weak comdit@ex-

actly the requests of the strong one. We call them simply obliging Streett games.



As a generalised Biichi condition can be recognised by a Streett autowittion
only one state, we can use Lemma 2 to reduce an obligiStyeett game with

n vertices to a classic&lk-Streett game witl2n vertices. As classical Streett
games can also be reduced to obliging Streett games (by always allowing Ada
to go to a vertex where all the pairs are forever requested and gramigdlassi-

cal Streett games problem is & complete [EJ88], it follows that the obliging
Streett games problem is ¢d? complete:

Theorem 6. The decision problem of existence of a gracious strategy for Eve
in obliging Streett games is dgP complete.

In the cases where Eve does not have a gracious strategy, we migteroe in
ested in knowing how many simultaneous requests she can allow. This can be
defined as a threshold problem: “Givér< k, is it possible to allow Adam to
visit at least/ different requests?”; or as an optimisation problem: “What is the
highest/ such that Eve can allow Adam to visit at leddsifferent requests?”.

Theorem 7. The threshold problem of obliging Streett games idNEoeom-
plete; and the optimisation problem of obliging Streett games FENR.

Proof. As the optimal number of request that Eve can allow is betwekeand

k, the second statement follows directly from the first one. Furthermore, it is
clear that the threshold problem is bl hard since it generalises both classical
Streett games (fof = 0) and obliging Streett games (fér= k).

In order to show that the threshold problem belongs ttNEpwe use once
more Lemma 2: we just need a non-deterministic automaton recognising the
words where at leagtdifferent colours are visited infinitely often. We describe
such an automaton in Figure 4, with the following conventions: the alphabet is
{1,...,k}, and for each, R, = {i}; there is an unmarked loop on each state;
unmarked edges are enabled for each letter and are lahelled O

5 Multi-Player obliging games

An interesting feature of obliging games is that they provide new and integestin
semantics for multi-player games. In this setting, Eve has more than one oppo-
nent and each must be allowed to satisfy his weak condition, regardlessof
the others do.

The definitions are similar to the two-player caseutatis mutandis
a n-player arena A is a finite directed graphV, F) without deadlocks
whose vertices are partitioned im subsets,V;,Vi,...,V,_1; a n-player
obliging gameis a n-player arena and as many colourings and conditions:
Yoo @;v1, W15 . . .5 V-1, ¥n—1. A gracious strategy for Eve in such a game
is such that:



Fig. 4. Biichi automaton recognising repeatedut-of-k

— any infinitec-play p satisfiesp;

— forany1 < i < n, for any finiteo-play x, there is a strategy; for Playeri
consistent withr such that any infinite play consistent with baetrand r;
satisfieg?;.

We can solvex-player obliging games by reduction to classical two-player
games, in away similar to the two-player case. However, we do not use datoma
to check whether the play satisfies the weak conditions, for two reashswie
cannot use non-deterministic automata: even if one opponent yields lcohtro
his moves, the others can still interfere so Eve cannot simply “chooset@cto
run; second, we would have to remember the current state of each automato
leading to an exponential blow-up in the size of the arena.

Theorem 8. LetG = (4,73, P,71,%1,...;Yn—1, ¥n—1) be an-player oblig-

ing game with arenad = (V, E,V,,Vi,...,V,_1). We can compute, in time

linear in the size of7, a gameG’ = (A’,vr,T) of size linear in the size a¥

and a mapping : V — V' with the following properties:

1L.T=dNWVB)AN...(¥—1V B,_1), WwhereBy, ..., B,_; are Blchi
conditions.

2. For each vertex in A, Eve has a gracious strategy fromin G if, and only
if, she has a winning strategy from the vertéx) in G'.

Proof. The construction ofG’ is similar to its counterpart in the proof of
Lemma 2. Each opponent has the possibility to leave Eve choose his move in his
stead. If one of them eventually always does so, the play has to satisfyhls
condition; otherwise, the corresponding Buichi condition allows Eve tor@gno

it. The proof is even simpler, as there is no need to keep track of a run of an
automaton. O



6 Conclusion

In this work we introduced the notion of obliging games and presented a linear
time reduction to classical games foralregular objectives specified as Muller
objectives. We also presented a complete analysis for the reduction andynemo
requirement when the specifications are given as parity objectivestudied

the important class of fairness (Streett) conditions, and showed that @pligin
ness Streett games are NB-complete. We also studied a natural quantitative
optimization problem for obliging Streett games and proved inclusidriNiR.

We showed extension of the notion of obligingness games to multi-player games
and how it leads to new and interesting semantics. In future work we will explo
how the solution of obliging games can be used to synthesize more desirable
controllers.
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