
Obliging Games

Krishnendu Chatterjee1, Florian Horn1,2, and Christof Löding3

1 IST Austria (Institute of Science and Technology Austria)
2 CNRS, LIAFA, Université Paris 7, France

3 RWTH Aachen, Germany
krish.chat@ist.ac.at; horn@liafa.jussieu.fr;

loeding@informatik.rwth-aachen.de

Abstract. Graph games of infinite length provide a natural model for open re-
active systems: one player (Eve) represents the controller and the other player
(Adam) represents the environment. The evolution of the system depends on the
decisions of both players. The specification for the system is usually given as an
ω-regular languageL over paths and Eve’s goal is to ensure that the play belongs
to L irrespective of Adam’s behaviour.
The classical notion of winning strategies fails to capture several interesting sce-
narios. For example, strong fairness (Streett) conditions are specifiedby a number
of request-grant pairs and require every pair that is requested infinitely often to
be granted infinitely often: Eve might win just by preventing Adam from mak-
ing any new request, but a “better” strategy would allow Adam to make as many
requests as possible and still ensure fairness.
To address such questions, we introduce the notion ofobliging games, where
Eve has to ensure a strong conditionΦ, while always allowing Adam to satisfy
a weak conditionΨ . We present a linear time reduction of obliging games with
two Muller conditionsΦ andΨ to classical Muller games. We consider obliging
Streett games and show they are co-NP complete, and show a natural quantita-
tive optimisation problem for obliging Streett games is inFNP. We also show
how obliging games can provide new and interesting semantics for multi-player
games.

1 Introduction

Games played on graphs provide a natural theoretical model to study prob-
lems in verification, such as synthesis of reactive systems [PR89,RW87], syn-
thesis of systems from specifications [BL69,Chu62], andµ-calculus model-
checking [Koz83,Sti01].

The vertices of the graph represent the states of the system, the edges rep-
resent transitions, the paths represent behaviours, and the players (Eve and the
opponent Adam) represent the controller for the system and its environment,
respectively. The goal of the controller is to satisfy a specification (desired set
of behaviours) irrespective of the way the environment behaves: the synthesis
of such a controller corresponds to the construction of a winning strategyin the
graph game.

The class ofω-regular objectives provide a robust specification language
to express properties that arise in verification and synthesis of reactivesys-
tems [Tho97]. Muller and parity specifications are two canonical ways to spec-
ify ω-regular objectives. In the classical study of graph games withω-regular
objectives, the input is a graph gameG and anω-regular objectiveΦ, and the
question is whether there is a winning strategy for a player (Eve) that ensures
thatΦ is satisfied irrespective of the strategy of the other player (Adam).

A specificationΦ often consists of two parts: an assumptionΦA and a guar-
anteeΦG and the specification requiresΦA → ΦG. The specificationΦA typ-
ically represents the environment assumption under which the guaranteeΦG

needs to be ensured. A winning strategy forΦ may vacuously satisfyΦ by vio-
lating ΦA, whereas a better strategy would ensure the “strong” specificationΦ

and allow the “weak” specificationΦA. For example, consider a Streett (fair-
ness) condition: the fairness condition consists of a set ofk request-grant pairs,
and requires that every request that appears infinitely often, must be granted
infinitely often. A winning strategy may satisfy the fairness conditions by not
allowing requests to happen, whereas a better strategy would be as follows: it en-
sures the strong specification that asks for the satisfaction of the strong fairness
specification, and allows for the corresponding weak specification that requires
that grants are allowed to happen infinitely often.

To address the question above we consider a very general frameworkof
games with two different levels of specifications: a strong oneΦ and a weak
oneΨ which are, in general, independent of each other. A “gracious” strategy
for Eve mustensurethe strong specification (in the classical sense), andallow
the weak one: Adam has the choice to satisfyΨ . We refer to them asobliging
games. In the important case of fairness specifications, the weak specification
can be self-derived from the fairness specification, and the weak specification
requires that the requests are allowed to happen infinitely often. The contribution
of our work is as follows:

1. We present a linear time reduction of obliging games (with two Muller con-
ditions) to classical games (with a single Muller condition) such that Eve has
a winning strategy in the classical game if, and only if, she has a gracious
strategy in the obliging game.

2. We present a detailed analysis of the reduction and memory requirement for
obliging games when both specifications are given as parity conditions.

3. In the case of fairness specifications (Streett-generalized Büchi conditions),
we show that the problem of the existence of a gracious strategy for Eve is
co-NP complete.
We also study a quantitative optimisation version of this problem and show
that it belongs toFNP (functionalNP).

4. We also show how our concepts can be extended to multi-player games,
leading to new and interesting semantics in the context of verification.

Related workOur notion of “gracious strategy” can be likened to “permissive
strategies”, which allow as many behaviours as possible) [BJW02]. In [BJW02]
it has been shown that most general strategies can be constructed only for safety
conditions, and for parity objectives a strategy that captures behaviourof all
memoryless winning strategies was presented. Our work is different as our ob-
jectives are more general (Muller), and the goal is to construct a strategy that
allows a given objective. Our work is also related to multi-player games on
graphs and Nash equilibria [CMJ04,Umm08]. However in Nash equilibria there
are no two levels of specifications as considered in obliging games.

2 Definitions

Arenas. A two-player game arenaA is a triple (V, V◦, E) where(V, E) is a
finite directed graph without deadlocks (each vertex has at least one outgoing
edge) andV◦ is a subset ofV calledEve’s vertices. The vertices inv \ V◦ are
Adam’s verticesand are usually denoted byV2.

Plays and Strategies.A playρ on the arenaA is a (possibly infinite) sequence
ρ1ρ2 . . . of vertices such that for alli < |ρ|, we have(ρi, ρi+1) ∈ E. The limit
vertices ofρ, denoted byInf(ρ), are the vertices occurring infinitely often inρ:
Inf(ρ) = {q | ∃∞i, ρi = q}.

A strategyof Eve on the arenaA is a functionσ from V ∗V◦ to V such that
for all x ∈ V ∗ and for allv ∈ V◦, we have(v, σ(xv)) ∈ E. A playρ is consistent
with σ (or a σ-play) if for all i < |ρ|, ρi ∈ V◦ ⇒ ρi+1 = σ(ρ1 . . . ρi).

Strategies can also be defined asstrategies with memory. In this case,σ is a
tuple(M, m0, σ

u, σn), whereM is the (possibly infinite) set ofmemory states,
m0 is the initial memory content,σu : (E × M) → M is thememory update
function, andσn : (V ×M) → V is thenext-movefunction. The memory-update
function can naturally be extended from edges to finite sequences of vertices:
σu

+(v0v1 · · · vi, m) is m if i = 0 andσu((vi−1, vi), σ
u

+(v0v1 · · · vi−1, m)) if i ≥
1. Using this definition, the next move determined byσ for a playxv ∈ V ∗V◦

is σn(v, m), wherem = σu

+(xv, m0). A strategy isfinite-memoryif M is a
finite set, andmemorylessif M is a singleton. Adam’s strategies are defined in
a similar way.

Muller conditions. A Γ -colouring γ of an arenais a partial function of the
edges ofA to an arbitrary set of coloursΓ . We use partial functions here be-
cause this sometimes eases the specification of the winning conditions. How-
ever, for formal reasons, we sometimes use a colour “−” that corresponds to the

undefined value. This colour is not considered when building the limit set ofa
colour sequence (hence the limit set can be empty).

A Muller conditionΦ onΓ is a subset of2Γ , and a playρ of A satisfiesΦ if,
and only if,Inf(γ(ρ)) ∈ Φ. Here,γ(ρ) corresponds to the sequence of colours
obtained by applyingγ to the edges ofρ. This is a finite or infinite sequence
overΓ , or an infinite sequence overΓ ∪ {−} using the above convention.

We also consider the usual special cases of Muller conditions (recall that we
allow partial colourings):
– theBüchi conditionis the condition{{⊤}, {⊥,⊤}} on{⊥,⊤};
– theco-Büchi conditionis the condition{∅, {⊤}} on{⊥,⊤};
– the k-generalised Büchi conditionis the condition {{1, . . . , k}} on
{1, . . . , k};

– thek-parity conditionis the condition on{0, . . . , k − 1} containing all and
only the subsets whose minimum is even;

– ak-Streettcondition onΓ is given by a set{(R1, G1), . . . , (Rk, Gk))} of k

request-grant pairs of subsets ofΓ . It contains all and only the subsets that
for eachi either intersectGi or do not intersectRi.
In the course of our proofs, it is often useful to consider boolean operations

on Muller conditions, in which we interpret negation as complementation and
conjunction as Cartesian product: ifΦ andΨ are conditions onΓΦ andΓΨ , then
Φ ∧ Ψ is the condition onΓΦ × ΓΨ which contains all and only the sets whose
projection on the first component belongs toΦ, and projection on the second
component belongs toΨ .

Notice that colourings arepartial functions, so their product may return a
colour for only one of the components. We then use the neutral colour “−” for
the undefined component.

Classical and obliging games.A classical Muller gameG on Γ is a triple
(A, γ, Φ) whereA is an arena,γ is a Γ -colouring ofA, andΦ —the winning
condition— is a Muller condition onΓ . An infinite playρ of A is winning for
Eve if it satisfiesΦ. A strategyσ is uniformly winning (resp. winning from a
vertexq) for Eve if anyσ-play (resp. anyσ-play starting inq) is winning for
her. A vertexq is winning for Eve if she has a winning strategy fromq. The
winning region of Eve is the set of vertices winning for her. Adam’s winning
plays, strategies, vertices, and regions are defined likewise, except that a play is
winning for Adam if it does not satisfyΦ.

An obliging gameG is a tuple(A, γΦ, Φ, γΨ , Ψ), whereA is an arena,γΦ is
a ΓΦ-colouring,Φ —thestrongcondition— is a Muller condition onΓΦ, γΨ is
aΓΨ -colouring, andΨ — theweakcondition— is a Muller condition onΓΨ . A
uniformly gracious strategyσ for Eveis such that:
– every infiniteσ-playρ satisfiesΦ;

– for any finiteσ-playx, there is an infiniteσ-playρ satisfyingΨ such thatx
is a prefix ofρ .

So, Eve has toallow Adam to build a play satisfyingΨ at any position, regard-
less of what he previously did. However, she does not need toensureΨ if Adam
is not willing to cooperate. Notice that there is no dual notion of spoiling strat-
egy for Adam. In particular, the notion of “determinacy” does not make sense in
obliging games, as Adam cannot demonstrate Eve’s lack of grace with a single
strategy.

We refer to obliging games by the names of the two conditions, with the
strong condition first: for example, a parity/Büchi obliging game is an obliging
gameG = (A, γΦ, Φ, γΨ , Ψ), whereΦ is a parity andΨ is a Büchi condition.

Example 1.Consider the parity/parity obliging game in Figure 1. The pairs de-
fine the colours of the edge, the first component corresponding to the strong
condition (Φ) and the second component to the weak condition (Ψ).

In order to satisfyΦ, a play has to either take the edge(q4, q6) infinitely
often, or the edge(q8, q6) infinitely often and the edge(q7, q2) finitely often. To
satisfyΨ , an infinite play has to take the edge(q7, q2) infinitely often. In this
game Eve has to behave differently depending on whether Adam moves toq3

or q4. If the token reachesq6 coming fromq4, then Eve can safely move toq7.
If the game reachesq6 coming fromq3, then she can first complete the cycle
q6q5q8q6 and then move toq5 and then toq0. This strategy can be implemented
using memory of size3 and it is a gracious strategy since each path satisfiesΦ

and Adam can produce a play satisfyingΨ by always moving toq4.

It is not difficult to observe that there is no gracious strategy for Eve with
memory of size two for this game. ⊓⊔

q0
(3,1)

q1 q2

q3
(3,3)

q4
(0,3)

q5 q6 q7

(1,2)

q8
(2,1)

Fig. 1.A parity/parity obliging game

3 Reducing obliging games to classical games

In this section we provide a general method to reduce obliging games to clas-
sical games with a single winning condition. The underlying idea is based on
the construction of merciful strategies from [BSL04]: we construct an extended
game graph in which Adam decides either to choose his next move himself or to
leave this choice to Eve. If he always leaves the choice to Eve from some point
onwards, then Eve has to prove that Adam indeed has the possibility to satisfy
the weak condition. Consequently, the winning condition for Eve in the new
game is the strong condition from the obliging game in conjunction with the
weak condition in the case that Adam only finitely often makes his own choice.

Note that in the case that Eve has to satisfy the weak condition, the game
remains in a subarena that is completely controlled by Eve. We use this fact
by allowing to simplify the weak condition by means of non-deterministicω-
automata. The required technical framework is defined below.

We useω-automata with an acceptance condition specified on the transitions
of the automaton rather than on the states. In our setting, anω-automaton is of
the formM = (Q, Σ, qin , ∆, γΥ , Υ), whereQ is a finite set of states,Σ is the
input alphabet,qin ∈ Q is the initial state,∆ ⊆ Q × Σ × Q is the transition
relation,γΥ : ∆ → ΓΥ is a (partial) colouring function, andΥ is an acceptance
condition overΓΥ similar to the winning conditions defined for games. We write
transitions(q, a, r) with γΥ ((q, a, r)) = c asq

a:c
−−→ r.

A run of M on an infinite wordα ∈ Σω is an infinite sequenceζ =
q0q1q2 · · · of states such thatq0 = qin , and(qi, α(i), qi+1) ∈ ∆ for eachi ≥ 0.
We define the infinite colour sequence induced byα andζ as the sequence ob-
tained by applyingγΥ to each transition:

γΥ (α, ζ) = γΥ ((q0, α(0), q1))γΥ ((q1, α(1), q2))γΥ ((q2, α(2), q3)) · · ·

The runζ on α is accepting ifγΥ (α, ζ) satisfies the acceptance condition. The
languageL(M) accepted byM is the set of all infinite words on whichM has
an accepting run.

As usual, we call an automaton deterministic if for each pair of stateq ∈ Q

and eacha ∈ Σ there is at most one transition(q, a, r) ∈ ∆.
We are interested in automata accepting languages that correspond to win-

ning conditions. Given a winning conditionΦ overΓΦ, we define the language
LΦ ⊆ (ΓΦ ∪ {−})ω as the set of all infinite sequences that satisfyΦ (recall that
“−” is a neutral colour representing the undefined value and is not considered
for evaluating the winning condition).

Lemma 2. Let G = (A, γΦ, Φ, γΨ , Ψ) be an obliging game with arenaA =
(V, E), and letM = (Q, ΓΨ , qin , ∆, γΥ , Υ) be anω-automaton acceptingLΨ .

There is a gameG′ = (A′, γΛ, Λ) and a mappingι : V → V ′ with the following
properties: (1)Λ = Φ ∧ (Υ ∨ B) for a Büchi conditionB; (2) for each vertex
v ∈ V , Eve has a gracious strategy fromv in G if, and only if, she has a winning
strategy from the vertexι(v) in G′; and (3) from a winning strategy for Eve in
G′ from ι(v) with memory of sizen one can construct a gracious strategy for
Eve inG fromv with memory of size2 · |Q| · n.

Proof. To simplify the reduction, we assume without loss of generality that the
arena is alternating,i.e.E ⊆ (V◦ × V2) ∪ (V2 × V◦).

We constructG′ in such a way that, at any time in a play, Adam can ask Eve
to show a path that satisfiesΨ . This is realised by introducing a second copy of
G in which all vertices belong to Eve. In this copy we additionally keep track of
the states of the automatonM recognisingΨ .

If Adam chooses to switch to this copy, Eve makes the choices on behalf of
Adam. Consequently, if from some point onward Adam decides to always leave
his choices to Eve, the resulting play has to satisfyΦ andΨ . Otherwise, it is
sufficient for Eve to satisfyΦ. The Büchi condition is used to distinguish these
two cases. WhetherΨ is satisfied can be decided using the conditionΥ on the
state sequence ofM.

Formally, the gameG′ = (A′, γΛ, Λ) and the mappingι are constructed as
follows:
– The winning condition isΛ = Φ ∧ (Υ ∨ B) whereB is a Büchi condition.
– The arenaA′ = (V ′, V ′

◦ , E
′) and the colouringγΛ of E′ are defined as

follows:
• V ′ = (V◦ × {play}) ∪ (V2 × {choose} × Q) ∪ (V × {show} × Q);
• V ′

◦ = (V◦ × {play}) ∪ (V × {show} × Q);
• Let u and v be vertices inV ; q and r be states inQ; anda, b, c be

colours inΓΦ, ΓΨ , ΓΥ such thatu
(a,b)
−−−→ v in E andq

b:c
−→ r in ∆. Then

the following edges belong toE′:

u ∈ V◦ : (u, play)
(a,−,⊥)
−−−−−→ (v, choose, qin)

u ∈ V2 : (u, choose, q)
(a,−,⊤)
−−−−−→ (v, play)

(u, choose, q)
(−,−,⊥)
−−−−−→ (u, show , q)

u ∈ V◦ : (u, show , q)
(a,c,⊥)
−−−−→ (v, choose, r)

u ∈ V2 : (u, show , q)
(a,c,⊥)
−−−−→ (v, show , r)

– The mappingι maps eachv ∈ V◦ to (v, play) and eachv ∈ V2 to
(v, choose, qin).
A schematic view of the construction is shown in Figure 2. We refer to the

nodes fromV◦ × {play} as the play part of the game, the nodes fromV ×

V◦ × {play} V2 × {choose} × Q V × {show} × Q

play choose show

Fig. 2.Schematic view of the reduction from Lemma 2

{show} × Q as the show part, and the nodes fromV2 × {choose} × Q as the
choice part.

We start by showing that a gracious strategyσ for Eve in the obliging
gameG can be used to define a winning strategy for Eve inG′: Each play
ρ′ in G′ naturally corresponds to a playρ in G that is obtained by removing
the vertices of the type(v, show , q) for v ∈ V2 and then projecting away the
{play , show , choose} and theQ components from the vertices. Let us denote
this operation bydel , i.e.,ρ = del(ρ′).

The winning strategy of Eve inG′ is defined as follows. For a finite playx′

that ends in a node of the form(u, play) with u ∈ V◦, Eve looks at the play
del(x′) in G, checks which move(u, v) she would have made according toσ,
and then moves to(v, choose, qin) in G′.

If the playx′ in G′ enters the show part in a node(u, show , qin) for the first
time after having been in the play part, then Eve considers the playx = del(x′)
in G. Sinceσ is a gracious strategy, there is a possible continuationρ of x such
thatxρ is aσ-play satisfyingΨ . In particular, sinceΨ is a Muller condition,ρ
satisfiesΨ and there is an accepting runζ of M onρ. Eve storesρ andζ in her
memory for the strategyσ′ and now moves from(u, show , qin) according toρ
for the first component, and according toζ for the third component.

If the play x′ in G′ is in a node(u, show , q) such that Eve has already
stored someρ andζ in her memory as described above, then she simply moves
according toρ andζ: she checks at which position in the play she has storedρ

andζ, which part ofρ andζ she has already reproduced since then, and makes
the corresponding next move to reproduce one more step ofρ andζ.

If Adam at some point decides to enter the play part, i.e., to move to a vertex
from V◦ × {play}, then Eve erasesρ andζ from her memory.

If π′ is an infinite play according to this strategy, then it certainly satisfiesΦ

becausedel(π′) is aσ-play and theΓΦ sequence ofπ′ corresponds to the one of
del(π′) except for some insertions of the neutral colour−. Furthermore, either
Adam infinitely often moves to a vertex fromV◦ × {play}, in which case the

Büchi conditionB is satisfied, or from some point onward Eve simulatesρ and
ζ to infinity, yielding a play inG′ that satisfiesΥ becauseζ satisfiesΥ . This
shows thatπ′ is winning and hence we have defined a winning strategy for Eve,
as desired.

For the other direction it suffices to show the third claim of the lemma since
the existence of a winning strategy for Eve inG′ implies the existence of a
finite-memory winning strategy. Let(M, m0, ς

n, ςu) be a winning strategy for
Eve inG′. We define a gracious strategy({p, s}×Q×M, (p, qin , m0), σ

n, σu)
for Eve inG. This strategy distinguishes two cases to decide whether to useςn

as defined on theplay vertices or on theshow vertices. These two cases depend
on the behaviour of Adam. If Adam makes a move inG from a vertexv that
corresponds to the move ofςn from the vertex(v, show) in G′, thenσu updates
the first component of the memory tos, i.e.,σn starts simulatingςn as if the play
is in theshow part ofG′. If Adam makes a move that is not of this kind, thenσu

updates the first component of the memory top andσn simulates the behaviour
of ςn on theplay part ofG′.

We first give the definition of the next move functionσn, which is quite
straightforward:

σn(u, 〈p, qin , m〉) = v with ςn((u, play), m) = (v, play , qin),
σn(u, 〈s, q, m〉) = v if ςn((u, show , q), m) = (v, play , q′) for someq′.

The definition of the memory update functionσu is a bit more involved since
we have to distinguish the different behaviours of player 1 as explained above.
Below, we define the update of the memory for a move fromu to v in G for
different memory contents. Ifu ∈ V◦, we assume thatv is the vertex that is
chosen by the next move functionσn because otherwise the move fromu to v

cannot occur in a play according to the strategy.
(i) If u ∈ V◦, thenσu(u, 〈p, qin , m〉 , v) = 〈p, qin , m′〉 with

m′ = ςu((u, play), m, (v, choose, qin))

andσu(u, 〈s, q, m〉 , v) = 〈p, q′, m′〉 with

m′ = ςu((u, show , q), m, (v, choose, q′))

and ςn((u, show , q), m) = (v, choose, q′) (here we use the assumption
thatσn(u, 〈s, q, m〉) = v, i.e.,v is the target of the next move function).

(ii) If u ∈ V2 and ςn((u, show , q), ςu((u, choose, q), m, (u, show , q))) =
(v, show , q′), thenσu(u, 〈x, q, m〉 , v) = 〈s, q′, m′〉 with

m′ = ςu+((u, play , q)(u, show , q)(v, show , q′), m)

for all x ∈ {p, s}. This is the case where the move fromu to v of Adam in
G corresponds to the move that Eve would have made in his place inG′.
To obtainm′ we look at how the memory would have evolved inG′ in the
move sequence in which Adam gives the choice to Eve.

(iii) If u ∈ V2 and ςn((u, show , q), ςu((u, choose, q), m, (u, show , q))) =
(v′, show , q′) for somev′ 6= v, thenσu(u, 〈x, q, m〉 , v) = 〈p, qin , m′〉
with

m′ = ςu((u, choose, q), m, (v, play))

for all x ∈ {p, s}. This is the case where Adam makes a choice different
from the one that Eve would have made on his behalf inG′.

We now show that this strategy is indeed gracious inG. From the definition
of σn andσu one can see that for everyσn-playρ there exists a correspondingςn-
play ρ′ that is obtained fromplay by inserting appropriate vertices fromV2 ×
{show} × Q at those positions whereσu updates the first component of the
memory tos, i.e., if (ii) in the definition ofσu is applied.

To formalize this letρ = v0v1v2 · · · be aσn-play and let

〈x0, q0, m0〉 〈x1, q1, m1〉 〈x2, q2, m2〉 · · · ∈ ({p, s} × Q × M)ω

be the corresponding sequence of memory contents according toσu.
Similar to the operationdel from the first implication of the proof we now

define an operationins that transformsρ into a corresponding play based on the
sequence of memory contents. By abuse of notation we also define the opera-
tion ins to work on tuples of nodes by inserting the necessary information (we
assume for simplicity that the play starts inV◦):

ins(ρ) = (v0, play)ins(v0, v1)ins(v1, v2)ins(v2, v3) · · ·

with

ins(vi, vi+1) =







(vi+1, play) if xi+1 = p andvi+1 ∈ V◦,

(vi+1, choose, qi+1) if vi+1 ∈ V2,

(vi, show , qi)(vi+1, show , qi+1) if xi+1 = s andvi+1 ∈ V◦.

Now one can verify that aσ-play ρ in G is transformed byins into a ς-play ρ′

in G′. Therefore,ρ satisfiesΦ because the colour sequences fromΓΦ of ρ and
ρ′ are the same except for some insertions of the neutral colour−. Furthermore,
at each position of a play inG, Adam has the possibility to move so that Eve
updates her memory content to an element withs in the first component: for a
σ-play x in G Adam checks what would have been the move of Eve according
to ς in G′ for the playins(x) extended by Adam’s move to the show part of
the game. If Adam always copies theseς moves toG from some point onwards,

then the resulting playρ satisfiesΨ becauseins(ρ) is a ς-play in G′ that does
visit V◦ × {play} only finitely often and hence satisfiesΥ . This means that the
simulated run ofM on the play is accepting and therefore the corresponding
play inG satisfiesΨ . This shows thatσ is indeed a gracious strategy. ⊓⊔

Lemma 2 provides a reduction of obliging games to standard games. This
notion is formalised as follows. We say that an obliging gameG can be reduced
to a standard gameG′ with memorym if:
1. there is a mappingι from the vertices ofG to the vertices ofG′ such that

for each vertexv of G Eve has a gracious strategy fromv in G if, and only
if, Eve has a winning strategy fromι(v) in G′;

2. given a winning strategy for Eve fromι(v) in G′ with memory of sizen,
one can compute a gracious strategy for Eve fromv in G with memory of
sizem · n.

We also use this notion in connection with classes of games. A classK of games
can be reduced to a classK′ of games with memorym if each gameG in K can
be reduced to a gameG′ in K′ with memorym. The time complexity of such a
reduction is the time needed to computeG′ from G, to compute the mappingι,
and to compute the strategy inG from the strategy inG′.

We can now instantiate Lemma 2 for several types of obliging games to
obtain results on their complexity. The first instantiation is for general Muller
conditions using the fact that the winning sequences for a conditionΨ can be
recognised by a one stateω-automaton which itself uses the conditionΨ .

Theorem 3. There is a linear time reduction with memory2 fromΦ/Ψ obliging
games to standard(Φ ∧ (Ψ ∨ B))) games for a Büchi conditionB.

The point of using a non-deterministicω-automaton in the formulation of
Lemma 2 is illustrated by the following result.

Theorem 4. There is a polynomial time reduction with memory2(ℓ + 1)k from
2k-parity/2ℓ-parity obliging games to standard(2k + 2)-parity games.

Proof. We apply Lemma 2 with a Büchi automaton acceptingLΨ for the 2ℓ-
parity conditionΨ . Such a Büchi automaton is easily constructed using(ℓ +
1) states. On the first state the automaton loops and outputs⊥ for each input
priority. Using the otherℓ states the automaton can guess at any point that2i

is the minimal priority which appears infinitely often in the input sequence.
It moves to statei and outputs⊤ whenever priority2i appears on the input.
For greater priorities it outputs⊥, and for priorities smaller than2i there is no
transition. One easily verifies that this automaton acceptsLΨ .

Lemma 2 yields a reduction with memory2(ℓ + 1) to a (2k-parity∧ Büchi)
game (using the fact that a disjunction of two Büchi conditions is equivalent

to a single Büchi condition). Analysing the Zielonka tree [Zie98,DJW97] of
a (2k-parity ∧ Büchi) condition shows that it hask leafs and the technique
from [DJW97] gives a reduction to2k + 2-parity game with memoryk. The
composition of these two reductions gives the claimed reduction. One can note
that this proof also works if the weak condition is a Rabin condition withℓ pairs.

⊓⊔

Since parity games are determined with memoryless strategies (see, e.g.,
[Tho97] or [Zie98]), Theorem 4 directly gives an upper bound on thememory
required for a gracious strategy in parity/parity obliging games.

Corollary 5. If Eve has a gracious strategy in a2k-parity/2ℓ-parity obliging
game, then she has a gracious strategy with memory of size at most2(ℓ + 1)k.

In the caseℓ = 1, we have rather tight lower bound for the required memory.
Indeed, it is possible to construct a2k-parity/Büchi obliging game where Eve
needsk memory states. The casek = 6 is depicted in Figure 3 (in order to
improve readability, there are some vertices of Adam from where two edges
lead to the same target).

10

8

9

6

7

45

2

3

0

1

⊤

Fig. 3.At least6 memory states

Eve has a gracious strategy withk
memory states that works as follows: if
Adam just played2i, she plays2i+1; oth-
erwise, she plays2(k − 1). This strategy
clearly ensures the parity condition. Fur-
thermore, Adam can get an infinite num-
ber of visits to the⊤ edge, by always an-
swering2(i − 1) to 2i + 1.

There is no gracious strategy for Eve
with less thank states: as there arek suc-
cessors of the central vertex, one of them
is never visited. Thus, Eve can ultimately
not propose the lower ones safely, and either does not guarantee the parity con-
dition or eventually forbids the Büchi condition.

4 Obliging Streett games

Streett games are a very natural setting for obligingness questions. Indeed,
the Streett condition allows Eve to win by either granting requests or denying
Adam the possibility to make them. It is thus natural to considerk-Streett/k-
generalised Büchi objectives, where the objectives of the weak condition are ex-
actly the requests of the strong one. We call them simply obliging Streett games.

As a generalised Büchi condition can be recognised by a Streett automatonwith
only one state, we can use Lemma 2 to reduce an obligingk-Streett game with
n vertices to a classical2k-Streett game with2n vertices. As classical Streett
games can also be reduced to obliging Streett games (by always allowing Adam
to go to a vertex where all the pairs are forever requested and granted)and classi-
cal Streett games problem is co-NP complete [EJ88], it follows that the obliging
Streett games problem is co-NP complete:

Theorem 6. The decision problem of existence of a gracious strategy for Eve
in obliging Streett games is co-NP complete.

In the cases where Eve does not have a gracious strategy, we might be inter-
ested in knowing how many simultaneous requests she can allow. This can be
defined as a threshold problem: “Givenℓ ≤ k, is it possible to allow Adam to
visit at leastℓ different requests?”; or as an optimisation problem: “What is the
highestℓ such that Eve can allow Adam to visit at leastℓ different requests?”.

Theorem 7. The threshold problem of obliging Streett games is co-NP com-
plete; and the optimisation problem of obliging Streett games is inFNP.

Proof. As the optimal number of request that Eve can allow is between−1 and
k, the second statement follows directly from the first one. Furthermore, it is
clear that the threshold problem is co-NP hard since it generalises both classical
Streett games (forℓ = 0) and obliging Streett games (forℓ = k).

In order to show that the threshold problem belongs to co-NP, we use once
more Lemma 2: we just need a non-deterministic automaton recognising the
words where at leastℓ different colours are visited infinitely often. We describe
such an automaton in Figure 4, with the following conventions: the alphabet is
{1, . . . , k}, and for eachi, Ri = {i}; there is an unmarked loop on each state;
unmarked edges are enabled for each letter and are labelled⊥. ⊓⊔

5 Multi-Player obliging games

An interesting feature of obliging games is that they provide new and interesting
semantics for multi-player games. In this setting, Eve has more than one oppo-
nent and each must be allowed to satisfy his weak condition, regardless ofwhat
the others do.

The definitions are similar to the two-player case,mutatis mutandis:
a n-player arena A is a finite directed graph(V, E) without deadlocks
whose vertices are partitioned inn subsets,V◦, V1, . . . , Vn−1; a n-player
obliging gameis a n-player arena and as many colourings and conditions:
γ◦, Φ; γ1, Ψ1; . . . ; γn−1, Ψn−1. A gracious strategyσ for Eve in such a game
is such that:

· · ·

· · ·

· · ·

•
•
•

· · ·

· · ·

1
2 k − ℓ + 1

2
3 k − ℓ + 2

ℓ
ℓ + 1 k

⊤

Fig. 4.Büchi automaton recognising repeatedℓ-out-of-k

– any infiniteσ-playρ satisfiesΦ;
– for any1 ≤ i < n, for any finiteσ-playx, there is a strategyτi for Playeri

consistent withx such that any infinite play consistent with bothσ andτi

satisfiesΨi.
We can solven-player obliging games by reduction to classical two-player

games, in a way similar to the two-player case. However, we do not use automata
to check whether the play satisfies the weak conditions, for two reasons: first, we
cannot use non-deterministic automata: even if one opponent yields control of
his moves, the others can still interfere so Eve cannot simply “choose” a correct
run; second, we would have to remember the current state of each automaton,
leading to an exponential blow-up in the size of the arena.

Theorem 8. Let G = (A, γΦ, Φ, γ1, Ψ1, . . . ; γn−1, Ψn−1) be an-player oblig-
ing game with arenaA = (V, E, V◦, V1, . . . , Vn−1). We can compute, in time
linear in the size ofG, a gameG′ = (A′, γΥ , Υ) of size linear in the size ofG
and a mappingι : V → V ′ with the following properties:
1. Υ = Φ ∧ (Ψ1 ∨ B1) ∧ . . . (Ψn−1 ∨ Bn−1), whereB1, . . . , Bn−1 are Büchi

conditions.
2. For each vertexv in A, Eve has a gracious strategy fromv in G if, and only

if, she has a winning strategy from the vertexι(v) in G′.

Proof. The construction ofG′ is similar to its counterpart in the proof of
Lemma 2. Each opponent has the possibility to leave Eve choose his move in his
stead. If one of them eventually always does so, the play has to satisfy hisweak
condition; otherwise, the corresponding Büchi condition allows Eve to ignore
it. The proof is even simpler, as there is no need to keep track of a run of an
automaton. ⊓⊔

6 Conclusion

In this work we introduced the notion of obliging games and presented a linear
time reduction to classical games for allω-regular objectives specified as Muller
objectives. We also presented a complete analysis for the reduction and memory
requirement when the specifications are given as parity objectives. We studied
the important class of fairness (Streett) conditions, and showed that obliging-
ness Streett games are co-NP complete. We also studied a natural quantitative
optimization problem for obliging Streett games and proved inclusion inFNP.
We showed extension of the notion of obligingness games to multi-player games
and how it leads to new and interesting semantics. In future work we will explore
how the solution of obliging games can be used to synthesize more desirable
controllers.

References

[BJW02] J. Bernet, D. Janin, and I. Walukiewicz. Permissive strategies: from parity games to
safety games.Theoretical Informatics and Applications, 36(3):261–275, 2002.

[BL69] J.R. Büchi and L.H. Landweber. Solving Sequential Conditions by Finite-State Strate-
gies.Transactions of the AMS, 138:295–311, 1969.

[BSL04] Y. Bontemps, P-Yv. Schobbens, and C. Löding. Synthesis of Open Reactive Systems
from Scenario-Based Specifications.Fundamenta Informaticae, 62(2):139–169, 2004.

[Chu62] A. Church. Logic, arithmetic, and automata. InProceedings of the International
Congress of Mathematicians, pages 23–35, 1962.

[CMJ04] K. Chatterjee, R. Majumdar, and M. Jurdziński. On Nash Equilibria in Stochastic
Games. InProceedings of CSL, LNCS 3210, pages 26–40. Springer, 2004.

[DJW97] S. Dziembowski, M. Jurdziński, and I. Walukiewicz. How Much Memory is Needed
to Win Infinite Games? InProceedings of LICS, pages 99–110. IEEE, 1997.

[EJ88] E.A. Emerson and C.S. Jutla. The Complexity of Tree Automata and Logics of Pro-
grams. InProceedings of FOCS, pages 328–337. IEEE, 1988.

[Koz83] D. Kozen. Results on the propositionalµ-calculus.TCS, 27(3):333–354, 1983.
[PR89] A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In Proceedings of

POPL, pages 179–190, ACM, 1989.
[RW87] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-event

processes.SIAM Journal on Control and Optimization, 25(1):206–230, 1987.
[Sti01] C. Stirling.Modal and Temporal Properties of Processes. Graduate Texts in Computer

Science. Springer, 2001.
[Tho97] W. Thomas. Languages, Automata, and Logic. InHandbook of Formal Languages,

volume 3, Beyond Words, chapter 7, pages 389–455. Springer, 1997.
[Umm08] M. Ummels. The Complexity of Nash Equilibria in Infinite Multiplayer Games. In

Proceedings of FoSSaCS, LNCS 4962, pages 20 – 34. Springer, 2008.
[Zie98] W. Zielonka. Infinite Games on Finitely Coloured Graphs with Applications to Au-

tomata on Infinite Trees.Theoretical Computer Science, 200(1–2):135–183, 1998.

