Mining Sequential Patterns to Explain
Concurrent Counterexamples*

Stefan Leue! and Mitra Tabaei Befrouei?

! University of Konstanz, Stefan.Leue@uni-konstanz.de
2 Vienna University of Technology, Tabaei@forsyte.at

Abstract. Concurrent systems are often modeled using an interleaving
semantics. Since system designers tend to think sequentially, it is highly
probable that they do not foresee some interleavings that their model
encompasses. As a consequence, one of the main sources of failure in
concurrent systems is unforeseen interleavings. In this paper, we devise
an automated method for revealing unforeseen interleavings in the form
of sequences of actions derived from counterexamples obtained by ex-
plicit state model checking. In order to extract such sequences we use a
data mining technique called sequential pattern mining. Our method is
based on contrasting the patterns of a set of counterexamples with the
patterns of a set of correct traces that do not violate a desired prop-
erty. We first argue that mining sequential patterns from the dataset of
counterexamples fails due to the inherent complexity of the problem. We
then propose a reduction technique designed to reduce the length of the
execution traces in order to make the problem more tractable. We finally
demonstrate the effectiveness of our approach by applying it to a number
of sample case studies.

Keywords: concurrency bugs, counterexample explanation, sequential pattern
mining, model checking

1 Introduction

Concurrency bugs are among the most difficult software bugs to detect and di-
agnose. This is mainly due to the inherent inability of humans to comprehend
concurrently executing computations and to foresee the possible interleavings
that they can entail. The interleaving semantics commonly used to interpret the
computation of concurrent systems imposes a total order on the execution of con-
current actions in a system. Concurrency is then interpreted as non-deterministic
choices between different interleavings. System designers are used to thinking
sequentially when designing the model of a system. In concurrent systems it

* Supported by the Austrian National Research Network S11403-N23 (RiSE) of the
Austrian Science Fund (FWF), by Deutsche Forschungsgemeinschaft (DFG) through
the grants “DiRePro” and “IMCOS” and by the Vienna Science and Technology
Fund (WWTF) through grants VRG11-005, PROSEED, and ICT12-059.

is therefore highly probable that they do not foresee some interleavings that
their model encompasses. It is therefore a widely held view that one of the main
sources of failure in concurrent systems is unforeseen interleavings resulting in
undesired system behavior.

Model checkers are particularly well-suited for detecting concurrency bugs
due to the exhaustive exploration of all possible interleavings of the concurrent
actions that they perform. They can therefore reveal bugs which are impossible
or difficult to find by testing methods. However, counterexamples generated by
model checking tools only indicate symptoms of faults in a model, they do not
offer aid in locating faults in the code of the model. In order to locate a root
cause for a counterexample in the code of a model a significant amount of manual
analysis is required. Since the manual inspection of lengthy counterexamples of
sometimes up to thousands of events is time consuming and error prone, an
automatic method for explaining counterexamples that assists model designers
in localizing faults in their models is highly desirable.

In this paper we aim at developing an automated method for explaining coun-
terexamples indicating the violation of a desired property in concurrent systems.
Our method benefits from the analysis of a large number of counterexamples that
can be generated by a model checking tool such as SPIN [9]. We refer to the
set of counterexamples that show how the model violates a given property as
the bad dataset. With the aid of SPIN, it is also possible to produce a set of
execution traces that do not violate the desired property. We refer to this set of
non-violating traces as the good dataset.

For explaining counterexamples, we examine the differences in the traces
of the good and bad datasets, which is the foundation of a large number of
approaches for locating faults in program code (see, for instance, [27]). Lewis’
theory of causality and counterfactual reasoning provides justification for this
type of fault localization approaches [13].

To reveal unforeseen interleavings in the form of sequences of actions, we use
a data mining technique called sequential pattern mining or frequent subsequence
mining [1,4]. This data mining technique has diverse applications in areas such
as the analysis of customer purchase behavior, the mining of web access patterns
and the mining of motifs in DNA sequences. Frequent subsequence mining is an
active area of research and a number of algorithms for mining frequent subse-
quences have been developed which have been proven to be efficient in practice
with respect to various test datasets [26,25,20].

By contrasting the sequential patterns of the good and bad datasets, we
extract a set of sequences of actions that are only common in the bad dataset but
not common in the good dataset. We refer to this approach as contrast mining
and to the resulting patterns as anomalies. We assume that these anomalies can
reveal to the model designer unforeseen interleavings or unexpected sequences
of actions that cause the violation of a desired property.

The contributions of this work are as follows:

1. We propose an automated method based on contrast mining for explaining
concurrency bugs.

2. We propose a length reduction technique to make the mining problem more
tractable.

3. We show how concurrency bugs can be explained in general by only analyzing
the good and the bad traces and without exploiting the characteristics of
specific bugs such as data races or atomicity violations.

In our precursory work on explaining counterexamples [12] we extract ordered
sequences of events consisting of contiguous events inside counterexamples. In
this work, we improve our explanation by extracting sequences of events which
do not necessarily occur contiguously inside counterexamples.

Structure of the Paper. Section 2 gives the definition of the problem and also
motivates the problem by introducing a running example. Section 3 describes
in detail our proposed method for explaining counterexamples. We then present
experimental results in Section 4. Section 5 discusses closely related work from
different domains. Section 6 concludes with a note on future work.

2 Problem Definition

2.1 Basic Concepts

Our goal is to identify ordered sequences of non-contiguous events that explain
the violation of a safety property in a concurrent system. Such a violation repre-
sents that there exist undesired or unsafe states which are reachable by system
executions. We use the explicit state model checker SPIN [9] in order to compute
system executions represented as sequences of events that lead from an initial
state of the system into a property violating state, often referred to as coun-
terexamples. We use linear temporal logic (LTL) [2] to specify properties and we
use o k£ ¢ to express that a counterexample o violates an LTL property .

Definition 1. Let Act denote the finite set of actions in a concurrent system. If
counterexample o violates the safety property o, then o will be a finite sequence
of events denoted as (e1, €, ..., en) where each e; corresponds to the execution of
an action in the system.

In fact, the finite set of actions, Act, corresponds to the Promela statements [9]
of the concurrent system models verified by the SPIN model checker. According
to Def. 1, we may use the terms occurrence of an event and execution of an
action interchangeably since both refer to the same concept. When we refer to
an execution trace or a trace, we mean a finite sequence of events according to
Def. 1.

Although counterexamples are typically lengthy sequences of events, only a
small number of events inside them are relevant to a property violation. In a
concurrent system, the order of the events inside a counterexample can also be
causal for the occurrence of a failure and can hence point to a bug. As we argue
above, system failures are often due to an unexpected order of the occurrence of
events in concurrent systems.

In this paper we explain concurrent counterexamples by identifying explana-
tory or anomalous sequences inside the counterexamples. Such sequences reveal
specific orders between some events inside a counterexample which are presumed
to be causal for the property violation.

Definition 2. ¢ = (eg, €1, €2, ..., €,,) is asubsequence of 0 = (Ey, E1, Es, ..., Ey,)
denoted as 1 C o, if and only if there exist integers 0 < ig < i1 < iy < i3... <
im < n such that eo = Ei,,e1 = E;,...,em = E; . We also call 0 a super-
sequence of 1.

Notice that a subsequence is not necessarily contiguous in the super-sequence.
To capture the notion of a contiguous subsequence we introduce the concept of
a substring.

Definition 3. 1 is a substring of o, if and only if there exist consecutive integers
from 0 < ig to (ip + m) < n such that eg = Eiy,e1 = Eig11, oy €m = Eigtm.

Definition 4. The sequence ¥ = {eg, €1, €2, ..., €,) s an explanatory sequence,
if for all execution traces o, it holds that ¥ C o = o £ .

In the following subsection we will use a motivating example to illustrate that
in concurrent systems such explanatory sequences occur in general as the sub-
sequences of counterexamples. In our previous work, the sequences isolated for
explaining counterexamples are the substrings of counterexamples containing
contiguous events inside the counterexamples.

2.2 A Motivating Example

Using an example case study we now illustrate how a deadlock can occur due to
the temporal order of execution of a set of actions in the model of a concurrent
system. Referring to this example we then argue that contrasting sequential
patterns of the bad and good datasets can reveal the anomalous sequences of
actions that can help to explain the violation of a property, such as a deadlock
in a concurrent system. We use the model of a preliminary design of a plain old
telephony system (POTS)? as an example. This model was generated with the
visual modeling tool VIP [10] and contains a number of deadlock problems. It
comprises four concurrently executing processes corresponding to two users and
two phone handlers. Each user in this model talks to a phone handler for making
calls. The phone handlers are communicating with each other in order to switch
and route user calls.

A portion of a counterexample indicating the occurrence of a deadlock in the
POTS model is given in Fig. 1. The events in this figure are displayed along with
the name of the proctypes* to which they belong. The events are, in fact, Promela
statements [9] that are separated by a “.” from the name of the proctypes to

3 The Promela code of the POTS case study is available at http://www.inf.uni-
konstanz.de/soft /tools/CEMiner /POTS7-mod-07-dldetect-never.prm.
4 proctype is the keyword used in Promela for defining a process.

which they belong. The events highlighted by the arrows on the left hand side of
the trace reveal a problematic sequence of actions which can be interpreted as
giving an explanation for the occurrence of a deadlock. This identified sequence
for explaining the deadlock is, in fact, an example of an unforeseen interleaving
of concurrent events. The presumed assumption of the model designer is that the
Userl and PhoneHandlerl proctypes are synchronized so that when the Phone-
Handler! proctype sends a dialtone message, the User! proctype subsequently
receives it before taking any other action. However, as Fig. 1 indicates the model
contains faults so that the events 6 and 15, which correspond to the sending of
a “dialtone” message by the PhoneHandlerl proctype, are not followed by a
receiving event of the Userl proctype. The statements executed by the Userl
proctype after events 6 and 15 are lonhook and phone_number = 0, respectively,
which causes an unread message to remain in the channel between the User! and
PhoneHandler! proctypes. While the unread message of the event 6 is received
by event 14, there is no corresponding receive event for the message of the event
15. Since the channels have a capacity of one message, the unread message of
the event 15 causes the PhoneHandler! proctype to block after event 22 when
it tries to send a “busytone” message to the User! proctype. Because of the
blocking of the PhoneHandlerl proctype, the User! proctype also blocks after
the event 23. Due to the symmetry in the model, a similar interaction can occur
between the User2 and PhoneHandler2 proctypes, which finally leads the system
to a deadlock state.

—>1- Userl.!offhook

—>2- PhoneHandler1.?offhook
3- User2.!offhook

4- PhoneHandler2.?offhook
5- PhoneHandler2.!dialtone
[—6- PhoneHandler1.!dialtone
—>7- Userl.!lonhook

|—>8- PhoneHandler1.?onhook
9- User2.?dialtone

10- User2.phone_number=0
11- User2.!dialdigit

—>12- Userl.!offhook

—>13- PhoneHandler1.?offhook
—>14- Userl.?dialtone

—15- PhoneHandler1.!dialtone
16- PhoneHandler2.?dialdigit
17- PhoneHandler2.phone_number!=1
18- PhoneHandler2.!busytone
—>19- Userl.phone_number=0
—>20- Userl.!dialdigit

—21- PhoneHandler1.?dialdigit
—>22- PhoneHandler1.phone_number!=1
L>23- Userl.!lonhook

Fig. 1. Part of a counterexample in POTS model

One interesting characteristic of the explanatory sequence in Fig. 1 is that
the events belonging to this sequence do not occur adjacently inside the coun-
terexample. Instead they are interspersed with unrelated events belonging to
the interaction of the User2 and Phonehandler2 proctypes. In general, events
belonging to an explanatory sequence can occur at an arbitrary distance from

each other due to the non-deterministic scheduling of concurrent events imple-
mented in SPIN. From this observation, it can be inferred that the explanatory
sequences are, in fact, subsequences of the counterexamples. In conclusion, we
maintain that sequential pattern mining algorithms, which extract the frequent
subsequences from a dataset of sequences without limitations on the relative
distance of events belonging to the subsequences, are an adequate and obvious
choice to extract explanatory sequences from large sets of counterexamples.

3 Counterexample Explanation

3.1 Generation of the Good and the Bad Datasets

In order to use sequential pattern mining and perform the contrast mining for
explaining counterexamples we use the SPIN model checker to generate two sets
of counterexamples, namely the "good” and the ”bad” datasets. With the aid of
the option “-c0 -€”, which instructs SPIN to continue the state space search even
when a counterexample has been found, we generate a set of counterexamples
violating a given property ¢, called the bad dataset, denoted by Yp: Yp =
{o | o £ ¢}. The good dataset includes the traces that satisfy . Such traces
can be generated by producing counterexamples to —. This is justified by the
following lemma:

Lemma 1. For an execution o, if o satisfies @, which is denoted as o |= p, then
it holds that 0 |= @ < o = - [2].

If ¢ is a safety property, the negation of this property yields a liveness prop-
erty. The counterexamples violating a liveness property are infinite lasso shaped
traces.

Definition 5. Let ¢ and (¢) denote finite traces. We call ¢ = ¢.(¢/)* an infi-
nite lasso shaped trace where ¢ is the finite prefiz of ¢ and w denotes that ¢’ is
repeated infinitely.

For the purpose of our analysis we produce finite traces from the infinite good
traces by concatenating ¢ with one occurrence of ¢'. We use Y to denote a
good dataset: Xg = {¢ | ¢ = ¢ A ¢ is finite}

3.2 Sequential Pattern Mining

We now give a brief overview of terminology used in sequential pattern mining,
for a more detailed treatment we refer the interested reader to the cited literature
and in particular to [4].

A sequence dataset S, {s1,s2,...,8n}, is a set of sequences. The support of
a sequence « is the number of the sequences in S that « is a subsequence
of: supports(a) = |{s | s € SA«aC s}|. Given a minimum support threshold,
min_sup, the sequence « is considered a sequential pattern or a frequent subse-
quence if its support is no less than min_sup: supports(a) > min_sup. We denote

the set of all sequential patterns mined from S with the given support threshold
min_sup by FSs min_sup; 1-€., FSgmin_sup = {a | supports(a) > min_sup}.

Since mining all sequential patterns will typically result in a combinatorial
number of patterns, some algorithms, such as [26, 25] only mine closed sequential
patterns. When a sequential pattern does not have any super sequence with the
same support, it is considered as a closed pattern. The set of all closed sequential
patterns mined from S with the given support threshold min_sup, denoted by
CSs,min_sup, is defined as follows:

Definition 6. CSsmin sup = {a | @ € FSsmin_sup A 18 e FSs min_sup such
that o T B A supports(a) = supports(3)}.

In fact, the support of a closed sequential pattern is different from that of its
super-sequences. Since every frequent pattern is represented by a closed pattern,
mining closed patterns leads to a more compact yet complete result set. In other
words, closed patterns are the lossless compression of all the sequential patterns.

As an example, consider a sequence dataset S that has five sequences, S =
{abced, abecf, agbch, abijc, aklc}. If the min_sup is specified as 4, FSg4 = {a :
5,b:4,c:5,ab:4,ac:5,bc: 4,abc : 4} where the numbers denote the respective
supports of the patterns. However, CSg 4 contains only two patterns, {abc : 4, ac :
5}.

For explaining counterexamples, we first mine closed sequential patterns from
the bad and the good datasets with the given support thresholds Ts and T,
respectively. We call the sets of closed patterns mined from the bad and the
good datasets, CSx, v, and CSx, 1, respectively. Contrasting the sequential
patterns of the good and the bad datasets results in the patterns which are only
frequent in the bad dataset. We call these patterns anomalies.

Definition 7. We call ASry 1, = {a | a« € CSsyrp Nv € CSxre} =
CSsy 15 — CSso 1 the set of all anomalies.

The anomalies computed according to Def. 7 are, in fact, a set of ordered
sequences of events which give an explanation for the property violation. We
maintain that the extracted set of anomalies is indicative of one or several faults
inside the model. These anomalies can hence be used as the clues to the exact
location of the faults inside the model and thereby greatly facilitate the manual
fault localization process.

3.3 Complexity Issues

One of the major challenges in applying sequential pattern mining algorithms for
explaining counterexamples is the scalability of these algorithms. In our precur-
sory work [12] we discuss that mining sequential patterns from the datasets of
counterexamples generated from typical concurrent system models is intractable.
As we argue, this observation is due to inherent characteristics of those datasets,
in particular the average length of the sequences that they include as well as their
denseness. We conclude that we need some technique for reducing the length of

the counterexamples in order to make the use of sequential pattern mining in
this application domain tractable. We will propose a length reduction technique
in the subsequent subsection.

Reducing the Length of the Traces. We are mainly analyzing the behavior
of non-terminating communication protocols. By inspecting the structure of the
finite traces of these protocols in X' and X¢ it becomes obvious that events
belonging to particular processes, for instance some event a, may occur repeat-
edly. For example, inside a trace of the POTS model in Fig. 3 we can observe
multiple executions of the actions Userl.loffhook and Userl.lonhook. In order
to reduce the length of the execution traces in the good and the bad datasets,
we exploit repetitions of the execution of actions inside the traces. Instead of
analyzing the temporal order between all the events of a trace, we decompose
each trace into a number of subtraces and examine the temporal order of the
events that they contain in isolation. A possible choice for decomposing a trace
into subtraces is via breaking the traces at the execution of a repeating action
a. Thus, the obtained subtraces contain the events occurring between each two
subsequent executions of a. We define the notion of a subtrace as follows:

Definition 8. Let ¢ denote a finite trace and action a executed n times inside ¢.
By breaking ¢ at the executions of a, n subtraces will be generated. The (i+ 1)
subtrace is defined as ¢iy1,4 = (@i, bi0, ..., bim) where a; is the ith execution of
the action a in ¢ and b; ; is Gt event between the occurrence of a; and a; 1. The
event that occurs next to b; m 5 Giy1.

The subtraces ¢; , reveal the temporal order between the events that are pre-
ceded by the execution of a in the traces, and hence by analyzing these subtraces
we can only extract the anomalous sequences of events that precede the execu-
tion of a to explain counterexamples. Hence, the extracted anomalous sequences
for explaining counterexamples will only contain one execution of the action a.
Notice that as a consequence of this abstraction we lose access to the causes of
failures that spread over multiple cycles, for instance the repeated occurrence of
event q itself without the occurrence of some other event in between.

Instead of mining patterns from the datasets X'p and Y, we mine patterns
from the datasets Xpr, and Ygg, containing the subtraces of the traces in
Y'p and Xg, respectively: Xpr, = {04 | 04 is a subtrace of o and o € X5} and
Yor, = {ba | ¢a is a subtrace of ¢ and ¢ € Xg}. In fact, for producing X'gg,,
we break up each trace in X and accumulate the resulting subtraces in X'gr, .
We do the same for Ygp,. In analogy with Def. 7, anomalies are then computed
by

ASTy 1.0 = CSsppn, .15 — CSsgn, To- (1)

For instance, the identified sequence in the example of Sect. 2.2 for explaining
the deadlock in the POTS model has portions (1,2,6,7,8) and (12, 13, 14, 15,
19, 20, 21, 22, 23) which can be mined from the subtraces achieved by breaking
the traces at the execution of Userl.!loffhook. As we have seen in Sect. 2.2, each

of these portions reveals a problematic sequence of actions that gives clues about
the location of the fault in the model.

As we will see in the experimental results section, this reduction technique
can reduce the average sequence length of the datasets significantly, and hence
can make mining sequential patterns from them feasible. Table 1 shows the
amount of the length reduction for the bad and good datasets of the POTS
model obtained by applying this length reduction technique.

Model|Datasets|#seq. before|#seq. after|avg. seq.|lavg. seq. len.
reduction reduction len. before|after reduction
reduction
bad 4109 497595 1677 13
POTS good 107029 43668 3079 21

Table 1. Average sequence length before and after reduction, POTS model datasets

Determining an action a at which to break up the traces is a heuristic decision.
In principle, any action whose execution is recurrent inside the execution traces
can be used for breaking up the traces. However, considering the functionality
of the model some actions may seem to be more interesting to be analyzed
with respect to their ordering relationships with other actions. Such actions
of interest can correspond, for instance, to the start of interactions between
different concurrent processes in a communication protocol. For example, in the
POTS model many interactions start with the execution of Userl.loffhook. It
initiates a sequence of events handling a telephone call and is hence a candidate
for the event a. Apparently, we lose some ordering relationships between the
actions of a model by shortening the traces via breaking them at the execution
of some specific action. However, if we use the actions corresponding to the
start of interactions between concurrent processes for breaking the traces, we
may lose less important temporal orders from the user perspective. Currently, in
our case studies we detect the first action that is taken by one of the processes
in the system and use it for breaking up the traces. An alternative strategy
for determining the action to break up the traces is by calculating how much
reduction can be gained on the average from each individual action, and then to
choose the one with the highest reduction ratio. Another heuristic is choosing
those actions which divide the traces evenly or result in subtraces with similar
length. For example, Table 2 shows different amount of length reduction gained
from different actions in the POTS model. In the experimental results section,
we report on the results achieved by breaking the traces at actions Ul.!offhook
(117) and P1.?0offhook which give us the most length reduction.

Threats to Validity. It should be noted that this reduction technique is mainly
applicable to execution traces that include repeating patterns of execution of ac-
tions, such as non-terminating communication protocols. For some large models
the proposed reduction technique may still not sufficiently reduce the length of
the execution traces. As we have seen the produced anomalies for explaining

10

Action Ul.loffhook|U1.7ringtone|Ul.loffhook| Ul.lonhook|U1.!onhook|P1.?ofthook
line no. 117 101 146 351 294 464
avg. seq. len.|14 343 1442 548 47 13

Table 2. Length reduction for different actions in the bad dataset of POTS model, Ul
and P1 refer to Userl and PhoneHandlerl processes, respectively.

counterexamples only contain one execution of the action a. If however for un-
derstanding the cause of the property violation inside the counterexample, the
isolation of an ordered sequence of events containing more than one execution of
a is required, then the analysis of the subtraces would not be sufficient. In other
words, since we lose some temporal order by analyzing only the subtraces, we
may not be able to explain some concurrency bugs.

3.4 Contrasting Sequential Patterns

For mining closed sequential patterns we use an algorithm called CloSpan [26].
The flowchart of our method is given in Fig. 2.

Bad & Good datasets

‘ Contrasting bad & good sequential patterns ‘

Action Reducing the trace lengths

Bad & Good reduced
dataset

| Mining sequential patterns |

Anomalies

| Grouping anomalies |

I

| Ranking grouped anomalies |

I

Potential faults

Threshold

Bad & Good sequential patterns

| Filtering sequential patterns |

%,

Fig. 2. Flowchart of explaining counterexamples method

The final result set of the method contains the distinguishing patterns rep-
resenting the set of sequences of actions that are only frequent or typical in the
bad dataset. This set is generated by equation (1). The user defined threshold
values, Tp and T in equation (1) are, in fact, the parameters of our method.
By decreasing the value of the support threshold, the number of the generated
sequential patterns from a dataset of traces increases. In order to reduce the
number of the mined patterns, we remove the patterns which are substrings of
some other generated pattern. This is because the ordering relationship that can
be inferred from these patterns can also be inferred from the longer patterns
that these patterns are substrings of.

In order to facilitate the interpretation of the result set obtained by equation
(1) we divide the anomalies into a number of groups so that each group contains

11

patterns which are all subsequences of the longest pattern in that group. Fig. 4
shows an example of such a group of patterns. One temporal order that can be
inferred from the longest pattern in Fig. 4 is (334, 1426, 444). From the subse-
quences of the longest pattern, it can be inferred that not always “1426” occurs
between “334” and “444” because (334,444) is also frequent, and not always
“1426” is preceded by “334” because (1406, 1426,444) is also frequent.

—>Userl.!offhook
PhoneHandler1.?offhook

PhoneHandler1.?onhook
—>Userl.!offhook
PhoneHandler1.?offhook I 64 1406 334 1426 444 484 1806 644 1986|

PhoneHandler1.?onhook J/

—>Userl.loffhook | 64 1406 334 444 484 1806 644 1986|
PhoneHandler1.?offhook

Userl.?dialtone

| 64 1406 1426 444 484 1806 644 1986|

Fig. 3. Multiple occurrence of events
inside an execution trace Fig. 4. Patterns inside one group

The groups of patterns are then ordered based on the length of the longest
pattern inside them. Groups with the shorter length of the longest pattern will
be ranked higher because the analysis of these patterns by the user requires less
effort.

4 Experimental Evaluation

The experiments that we report on in this section were performed on a 2.67 GHz
PC with 8 GB RAM and Windows 7 64-bit operating system. The prototype
implementation of our method was realized using the programming language
C#.Net 2010. We discuss the results obtained by applying our method to a
number of case studies.

Case Study 1: POTS Model. We first applied our method to the POTS model
(see Sect. 2.2) in order to obtain explanations for the occurrence of deadlocks.
The execution traces were shortened in length by breaking the original traces at
the execution of the action Userl.loffhook as it has been explained in Sect. 3.3.
In order to study the effect of the threshold value on the number of the gen-
erated patterns in the result set we applied different threshold values, starting
with a comparatively high threshold value of 90%. Fig. 5 shows how the number
of the generated patterns is reduced after our filtering step. The reduction is by
a factor of approximately 0.5. It also illustrates how the number of the closed
sequential patterns increases when decreasing the threshold. Mining closed se-
quential patterns from the good dataset of POTS with the min_sup of 10% takes
359.651 sec. and consumes 31.327 MB of main memory while with the min_sup
of 90% it takes only 0.074 sec. and consumes only 3.69 MB of main memory.
In Fig. 6, the number of the anomalies obtained by equation (1) along with
the number of the groups that these anomalies are divided into are given. From

12

1000 1000000
100000 j
10000 /
1000 //
100
=—4—Closed —4—Closed
——Closed after Filtering 10 —#—Closed after Filtering

1 1 ——
90 80 70 60 50 40 30 20 10 90 80 70 60 50 40 30 20 10

=
15}
S}

=
5]

#Seq. Patterns-(log-scale)
#Seq. Patterns-(log-scale)

min_sup (%) min_sup (%)
(a) Bad dataset (b) Good dataset

Fig. 5. Number of the closed sequential patterns in the bad and good datasets before
and after filtering.

the figures 5 and 6, it can be inferred that although the number of the generated
closed sequential patterns from the bad and good datasets can be quite high,
the number of the anomalies that the user needs to inspect to understand the
root cause of the deadlock is mostly less than 10, at least for thresholds of not
less than 20. In Fig. 6, the precision of the method shows the number of the
sequences in the result set which actually reveal some anomalous behavior. As
this figure shows, only for the thresholds of 30%, 20% and 10% the precision
is less than 100%. Considering the way that we generate the good and the bad
datasets, these datasets may not include all the possible good and bad traces
that can be produced by the execution of the model. In the final result set of
the method, therefore, we may get some false positives that do not reveal any
problematic behaviors in the model. The computed precision measure for each
case study shows the number of the true anomalous sequences among all the
sequences of the result set. This precision was calculated manually.

1000

100
4= hefore grouping
4 ~i—after grouping
£

precision

N
o

#distinguishing patterns-(log-scale)

1 T T T T T T 1
9 80 70 60 50 40 30 20 10
min_sup(%)

Fig. 6. Number of the anomalies, number of the groups of anomalies and the precision

The manual inspection of the anomalous sequences in the result set of the
method reveals some faults in the model. In fact, two faults can be detected from
the result sets generated by the thresholds 20% and 10%. Other result sets which
are generated by higher threshold values only reveal one fault. For example, one
of the anomalous sequences for the support threshold of 90% is Userl./offhook,
PhoneHandler1. ?offhook, Userl.?dialtone, while according to the behavior of the

13

model the expected sequence from the user perspective is Userl.loffhook, Phone-
Handler1.?offhook, PhoneHandlerl.!dialtone, Userl.?dialtone. Considering the
expected sequence a receiving dialtone message should always be preceded by a
sending dialtone message. The anomalous sequence reveals a deviation from the
expected sequence because in this sequence the receiving dialtone messages is not
preceded by a corresponding sending dialtone message. This implicitly reveals
the presence of an unread message in the channel. Finally, it can be inferred
that there is a lack of synchronization between the user and the phone handler
proctypes so that when the phone handler sends a dialtone message, the user
instead of receiving that message takes another action.

By breaking the traces at PhoneHandlerl1.?offhook instead of Userl.loffhook,
by the support threshold of 90% a result set containing of 5 anomalies will be
generated. In fact, these anomalies also reveal the same fault as explained above.

It must be noted that our method is not supposed to be complete, and we
use the method as part of an iterative debugging process. After each run of the
method, aided by the revealed anomalous sequences the user will try to remove
as many causes of property violation as possible. In case the model still contains
faults after being modified, the user will apply the method again. This procedure
can be iterated until all the causes of property violation in the model have been
removed. For example, we tried to remedy the problem in POTS by adding some
code in the user proctype which removes a message dialtone from the channel
between the user and the phone handler proctypes, if it is present, when sending
an onhook message. After this modification, we again applied our method on
the resulting model, this time the number of the generated counterexamples
decreased from 4109 to 2229. The produced result set reveals that there is still
a lack of synchronization between the user and the phone handler proctypes.

Case Study 2: Rether Model. The second model is a Real-time Ethernet proto-
col named Rether. It was obtained from [21]. In order to reduce the size and
complexity of the original model from [21] we have reduced the values of its
parameters. A detailed description of this model can be found in [12]. We ap-
plied our method to this model in order to explain the occurrence of a deadlock.
The statement “i=0" of the Token proctype was used for breaking the execution
traces because the interaction between the processes in this model starts with
the execution of this statement. Table 3 shows the extent of the length reduction
of the traces for this case study.

datasets|#seq. before|#seq. after|avg. seq. len. before|avg. seq. len. after
reduction reduction reduction reduction

bad 8 92 322 28

good 78 812 298 29

Table 3. Results of length reduction in the Rether model datasets

A threshold value of 2% was applied to the reduced length bad and good
datasets for generating the sequential patterns. In Table 4 the number of the
generated sequential patterns before and after filtering along with the number

14

of the anomalies obtained by equation (1) and the number of the faults detected
by the user inspection are given.

datasets|#seq. #seq. patterns|#anomalies |#groups of|precision |#detected
patterns |after filtering anomalies faults
bad 182 170
11 1
good 466 244 23 7

Table 4. Rether model results

Even though appr. 656% of the extracted groups reveal some problematic
behavior in the system, the inspection of only 2 of them, corresponding to the
first and the 8 groups in the ranked result set, is required for localizing an
atomicity violation in one of the proctypes of the model. Due to space limitations
we refer the interested reader to our previous work [12] for an extensive discussion
of which specific sequence of actions reveals an atomicity violation in this model.

Comparison with our Previous Work. The fault localization method that we
proposed in a precursory paper [12] aids the user in locating unforeseen inter-
leavings inside the counterexamples of concurrent systems by extracting a set
of short substrings of mainly length two that only occur in the bad dataset.
These short substrings along with the corresponding counterexamples are given
to the user for further analysis. For example, for this case study, this method
generates 3 short distinguishing substrings of length two which are given to
the user along with the corresponding counterexamples. With the aid of these
substrings, the user needs to inspect on the average 30 events inside the corre-
sponding counterexamples in order to identify the anomalous sequences pointing
to an atomicity violation bug in the model. However, the anomalous sequences
detected with the aid of the method proposed in this paper are in themselves
indicative of the atomicity violation bug in the model. In other words, as op-
posed to our precursory work an inspection of counterexamples is not required
at all. Specifically, in order to detect an atomicity violation in this case study,
an anomalous sequence of at least length 30 needs to be isolated inside a coun-
terexample. With the aid of the short substrings of length 2 extracted by our
previous method, the user still needs to inspect the counterexample in order to
isolate an anomalous sequence of length 30, even though these substrings facili-
tate the user inspection greatly. However, the groups of anomalies generated by
the method of this paper contain the anomalous sequence of length 30 required
for locating the atomicity violation in the model. In fact, the last 7 events of
this sequence appear in the first group of the ranked result set and the rest of
the events are included in the 8" group. We contend that the current method
imposes less inspection effort on the user for locating the faults in the model.

Case Study 3: Railway Model. We finally applied our method to explain coun-
terexamples indicating the violation of a safety property in the small railroad
crossing example which is also used as a sample case study in [11]. The desired

15

safety property is that the car and the train should never be in the crossing si-
multaneously, which is considered a hazardous state of the system. In this small
model, the length reduction step was not necessary.

Table 5 summarizes all the figures related to this model and the achieved re-
sults by applying the high support threshold value of 90%. The detected anoma-

datasets|#seq.|avg. seq.|#seq. #seq. patterns|#anomalies |#detected
len. patterns |after filtering faults

bad 28 15 1 1 1 1

good 85 15 6 2

Table 5. Railway model results

lous sequence reveals a sequence of actions that leads the system to an undesired
state in which the variables “carcrossing” and “traincrossing” have both the
value “1”. This indicates that both a car and a train are in the crossing at the
same time, which is equivalent to a hazard state. This sequence, in fact, guides
the user to the location of an atomicity violation bug in the “Gate” proctype.
The presumed intention of the model designer is that the transmission of the
signal “1” through the gateCtrl channel would be performed atomically with the
changing of the global variable “gatestatus” to “1”. However, due to the fault in
the model, the execution of these two statements is interleaved with some other
concurrent actions and leads the system to a hazard state.

Dataset Generation. As it has been explained in Sect. 3, we use the option
“-c0 -¢” in SPIN, for generating the good and the bad datasets which can be
time-consuming for some case studies. For example, for the POTS model SPIN
generates 303,589 good traces which takes around 14 hours. However, the dataset
generation for the other two case studies takes less than a minute. If the gen-
erated datasets have fewer numbers of traces than the ones generated with the
option “-c0 -€”, our method is still applicable to them since the method is not
guaranteed to be complete. However, when the datasets offer a higher coverage
of the good and the bad behaviors, the output of the method is more precise
and the number of the false positives among the explanations is reduced.

5 Related Work

In this section, we briefly discuss closely related work that has not yet been
addressed in earlier sections.

Pattern Mining in Software Analysis. Data mining techniques have proven to
be useful in the analysis of very large amounts of data produced in the course of
different activities during various states of the software system development cy-
cle. Frequent pattern mining techniques which find commonly occurring patterns
in a dataset are broadly used for mining specifications and localizing faults in
program code [15,14,19,5,22]. The work documented in [15] adapts sequential

16

pattern mining techniques in order to mine specifications from recorded traces of
software system executions. It seems that the patterns generated by this method
can also be used for counterexample explanation. However, we faced scalability
issues when applying this method to the POTS model case study that we intro-
duce in Section 2.2. The longest distinguishing patterns between the bad and the
good datasets that could be generated by this method were only 2 events long and
did not carry any interesting information with respect to ordering relationships
amongst events. CHRONICLER [22] is a static analysis tool which infers func-
tion precedence protocols defining ordering relationships among function calls
in program code. For extracting these protocols a sequence mining algorithm is
used. The methods in [14,19,5] use graph and tree mining algorithms for local-
izing faults in sequential program code. A commonality of these methods is that
they first construct behavior graphs such as function call graphs from execution
traces. They then apply a frequent graph or tree mining algorithm on the passing
and failing datasets of constructed graphs in order to determine the suspicious
portions of the sequential program code. As opposed to this approach, our goal
is to identify sequences of interleaved actions in concurrent systems, which the
above cited works are unable to provide.

Concurrency Bug Detection Methods. AVIO [16] only detects atomicity viola-
tions and, as opposed to our method, is tailored to only identify single variable
bugs. Examples of tools which only focus on detecting data races are lockset bug
detection tools [23] and happens-before bug detection tools [18]. In contrast to
these approaches, which lack generality and rely on heuristics that are specific
to a class of bugs, the output of our method in the form of anomalous sequences
can be indicative to any type of concurrency bugs in the program design that
can be characterized by a reachability property.

The work described in [17] proposes a more general approach for finding
concurrency bugs based on constructing context-aware communication graphs
from execution traces. Context-aware communication graphs use communication
context to encode access ordering information. A key challenge of this method
is, however, that if the relevant ordering information is not encoded, bugs may
not lead to graph anomalies and therefore remain undetected. Our method does
not rely on such an encoding but directly analyzes the temporal ordering of the
event. It therefore appears to be more general than the approach in [17].

Counterexample Ezxplanation Methods. In [12], we provide a detailed comparison
of our method with a closely related work by Groce and Visser [7]. For that
comparison, the arguments given in [12] are also valid for our current work,
because, in fact, the current method is the enhancement of our precursory work.
The causality checking method proposed in [11] computes automatically the
causalities in system models by adapting the counterfactual reasoning based
on the structural equation model (SEM) by Halpern and Perl [8]. This method
identifies sequences of events that cause a system to reach a certain undesired
state by extending depth-first search and breadth-first search algorithms used
for a complete state space exploration in explicit-state model checking. It seems

17

that the main superiority of our method is less computational cost in terms
of memory and running time for detecting at least one fault in the model. The
causality checking method considers all the possible finite good and bad execution
traces for identifying the combination of events which are causal for the violation
of a safety property. Since we do not seek completeness, our mining method is
still applicable even if the datasets do not include all the possible good and bad
execution traces, which can be an impediment in practice.

Some other automated counterexample explanation techniques such as [3,
24,6] only take the values of program or model variables into account when
computing which variable values along a counterexample trace cause a violation
of some desired property. In contrast, the method we propose here considers the
order of execution of actions and can hence explain property violations which
are due to a specific order of execution of actions.

6 Conclusion

We have presented an automated method for the explanation of model checking
counterexamples for concurrent system models. From a dataset of counterexam-
ples we extract a number of anomalous sequences of actions that prove to point
to the location of the fault in the model by leveraging a frequent pattern mining
technique called sequential pattern mining. An experimental analysis showed the
effectiveness of our method for a number of indicative deadlock checking case
studies.

In future work we plan to reduce the computational effort that our method
entails by imposing a limit on the number of context switches in generation of
the good and the bad traces.

Acknowledgements. We wish to gratefully acknowledge a careful review of this
work by Georg Weissenbacher.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE, 1995.

2. C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, Cam-
bridge, Massachusetts, 2008.

3. L. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Trefler. Explaining counterex-
amples using causality. In Proceedings of CAV, LNCS. Springer, 2009.

4. G. Dong and J. Pei. Sequence Data Mining. Springer, 2007.

5. G. D. Fatta, S. Leue, and E. Stegantova. Discriminative pattern mining in soft-
ware fault detection. In Proceedings of the 3rd international workshop on Software
quality assurance, 2006.

6. A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error explanation with dis-
tance metrics. In International Journal on Software Tools for Technology Transfer
(STTT), 2006.

7. A. Groce and W. Visser. What went wrong: Explaining counterexamples. In Model
Checking Software, LNCS. Springer, 2003.

18

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

J. Halpern and J. Pearl. Causes and explanations: A structural-model approach.
part I: Causes. In The British Journal for the Philosophy of Science, 2005.

G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addision-Wesley, 2003.

M. Kamel and S. Leue. Vip: A visual editor and compiler for v-promela. In
Proceedings of the 6th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), LNCS 1785, Springer Verlag,
2000.

F. Leitner-Fischer and S. Leue. Causality checking for complex system models. In
Proceedings of 14th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI), LNCS, Springer Verlag, 2013.

S. Leue and M. Tabaei-Befrouei. Counterexample explanation by anomaly detec-
tion. In Proceedings of 19th International SPIN Workshop on Model Checking of
Software, LNCS 7385, Springer Verlag., 2012.

D. Lewis. Counterfactuals. Wiley-Blackwell, 2001.

C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu. Mining behavior graphs for backtrace
of noncrashing bugs. In Proceedings of the Fifth SIAM International Conference
on Data Mining, 2005.

D. Lo, S. Khoo, and C. Liu. Efficient mining of iterative patterns for software
specification discovery. In KDD, 2007.

S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: Detecting atomicity violations via
access interleaving invariants. In ASPLOS, 2006.

B. Lucia and L. Ceze. Finding concurrency bugs with context-aware commu-
nication graphs. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2009.

R. Netzer and B. Miller. Improving the accuracy of data race detection. In Pro-
ceedings of the 3rd ACM Symposium on Principles and Practice of Parallel Pro-
gramming, ACM Press, 1991.

S. Parsa, S. A. Naree, and N. E. Koopaei. Software fault localization via mining
execution graphs. In ICCSA, 2011.

J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Pre-
fixspan: Mining sequential patterns efficiently by prefix-projected pattern growth.
In 17th International Conference on Data Engineering (ICDE’01), 2001.

R. Pelanek. Benchmarks for explicit model checkers, 2006.
http://anna.fi.muni.cz/models.

M. K. Ramanathan, A. Grama, and S. Jagannathan. Path-sensitive inference of
function precedence protocols. In Proceedings of the 29th international conference
on Software Engineering(ICSE), 2007.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a
dynamic data race detector for multithreaded programs. In ACM Transactions on
Computer Systems (TOCS), vol. 15, no. 4, 1997.

C. Wang, Z. Yang, F. Ivancic, and A. Gupta. Whodunit? causal analysis for
counterexamples. In ATVA, pages 82-95, 2006.

J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In ICDE,
2004.

X. Yan, J. Han, and R. Afshar. Clospan: Mining closed sequential patterns in large
datasets. In Proceedings of 2008 SIAM International Conference on Data Mining
(SDM’03), 2003.

A. Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kauf-
mann, Burlington, MA, 2009.

