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Abstract. We describe the Lingva tool for generating and proving complex pro-
gram properties using the recently introduced symbol elimination method. We
present implementation details and report on a large number of experiments us-
ing academic benchmarks and open-source software programs. Our experiments
show that Lingva can automatically generate quantified invariants, possibly with
alternation of quantifiers, over integers and arrays. Moreover, Lingva can be used
to prove program properties expressing the intended behavior of programs.

1 Introduction

Safety verification of programs is a challenging task especially for programs with com-
plex flow and, in particular, with loops or recursion. For such programs one needs ad-
ditional information, in the form of loop invariants, pre- and postconditions, or inter-
polants, that express properties to hold at certain intermediate points of the program.

In this paper we present an automated tool for generating program properties, in
particular loop invariants. Our tool, called Lingva, is based on the symbol elimina-
tion method of [9]. It requires no preliminary knowledge about program behavior, and
uses symbol elimination in first-order theorem proving to automatically derive complex
properties, as follows. Suppose we are given a loop L over scalar and array variables.
Symbol elimination first extends the loop language L to a richer language L′ by addi-
tional function and predicate symbols, such as loop counters or predicates expressing
update properties of arrays at different loop iterations. Next, we derive a set P of first-
order loop properties expressed in L′. The derived properties hold at any loop iteration,
however they contain symbols that are not in L and hence cannot yet be used as loop
invariants. Therefore, in the next step of symbol elimination, logical consequences of P
are derived by eliminating the symbols from L′ \ L using first-order theorem proving.
As a result, first-order loop invariants in L are inferred as logical consequences of P .

First implementation of symbol elimination was already described in [8], by using
the first-order theorem prover Vampire [10]. This implementation had however various
limitations: it required user-guidance for program parsing, implemented tedious trans-
lation of programs into a collection of first-order properties, had limited support for the
first-order theory of arrays and the generated set of invariants could not yet be used
in the context of software verification. In this paper we address these limitations and
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Fig. 1. The overall workflow of Lingva.

describe Lingva tool for generating loop invariants (Section 2). In addition to invariant
generation, Lingva can also be used for proving program properties, in particular for
proving program annotations from the generated set of invariants.

We evaluated Lingva on a large number of problems taken from recent research pa-
pers and open-source programs (Section 3). Our experiments addressed two evaluation
criteria: (i) scalability, that is for how many programs Lingva successfully generated
invariants; and (ii) expressiveness, that is can safety program annotation be automati-
cally proved from the invariants generated by Lingva. The invariants inferred by Lingva
are quantified properties over arrays and integers. Unlike [7, 3, 11, 5], our invariants can
express properties with quantifier alternations over the array content and exploit rea-
soning in the full first-order theory of arrays and integer arithmetic. In addition, in
our experiments, program annotations were successfully proved by Lingva for all loops
with nested conditionals. While other techniques, such as [13, 6, 14, 1], can handle more
general programs, we note that Lingva is fully automatic and requires no user guidance
in the form of invariant templates, interpolants or a priori defined program properties.

2 Lingva: Tool description

The general workflow of Lingva is summarized in Figure 1 and detailed below. Lingva
is a collection of C++ programs, glued together by Python scripts. Our implemen-
tation is available at: www.complang.tuwien.ac.at/ioan/lingva.html.
Running Lingva can be done by executing the command: Lingva problem.c, where
problem.c is a C/C++ program with loops. As a result, Lingva returns problem.c
annotated with loop invariants.

When compared to initial implementation from [8], the preprocessing part and the
code annotation and conversion parts of post processing are new features. Further,
Lingva extends that approach by more sophisticated path analysis methods and built-in
support for reasoning in the first-order theory of arrays. These features allows Lingva
to handle a programs with multiple loops and nested conditionals and derive quanti-
fied invariants that could not yet be obtained by [8], as arrays and integers, and their
axiomatisation, were not yet supported as built-in theories in [8].
Preprocessing. Input programs of Lingva are first parsed using the Clang/LLVM in-
frastructure [12] and the abstract syntax tree (AST) of the input is created. Although
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Example of input file Partial result of program analysis
void main() {
//loop 0
while (condition) {

loop_body
}
...
//loop_k: Partition_Init
int a, b, m;
int *aa, *bb, *cc;
while (a < m) {

if (aa[a] == cc[a]) {
bb[b] = a;
b = b + 1; }

a = a + 1;
}
...
}

...
18. ![X1]: bb(0,X1) = bb0(X1)
17. ![X0, X2, X3]: updbb(X0,X2,X3) => bb(X2) = X3
...
9. ![X0]: iter(X0) => a(X0) = a0 + X0
8. a(0) =a0
...
2. iter(X0) =>(let a := a(X0) in (let b := b(X0)

in ( let bb(X1) := bb(X0,X1) in a<m )))
1. ![X0, X1]: let a := a(X0) in (let b := b(X0)

in (let bb(X1) := bb(X0,X1) in (aa(a) = cc(a) =>
b(X0+1) = ( let bb(X1) := ite_t(b =
X1,a,bb(X1)) in ( let b := b +1 in (let a :=
a + 1 in b))))))

(a) (b)

Fig. 2. Program analysis with Lingva on the Partition Init program of Table 2.

Lingva front-end can parse arbitrary C/C++ programs, program analysis in the next
step has implemented support for a restricted programming model, as follows. We only
handle program loops with sequencing, assignments, and nested conditionals. Nested
loops, recursive or procedure calls are thus not yet supported. Further, we only treat in-
tegers and arrays. Also we restrict program tests and assignments over integers to linear
arithmetic expressions. If these restrictions are not met, Lingva terminates with an error
message that provides information on the violation of the programming model.

After the AST construction, each program loop is analysed by default by Lingva.
However, the user can also specify which loop or set of loops should be analysed by
calling Lingva with the option -f fn.loopNr. Where fn is the name of the input’s
C/C++ function block and loopNr gives the loop number of interest within fn.

Example 1. Consider Figure 2(a). It is written in C/C++ and contains multiple loops,
each loop being annotated with a natural number starting from 0. For simplicity, we only
show and describe Lingva on the kth loop of Figure 2(a); analysing the other loops can
be done in a similar manner. The kth loop of Figure 2(a) takes two integer arrays aa and
cc and creates an integer array bb such that each element in bb describes an array position
at which the elements of aa and cc are equal. This loop is the Partition Init
program from Section 3. For running Lingva only on this loop, one should execute the
command: Lingva problem.c -f main.k

Program Analysis. Program loops are next translated into a collection of first-order
properties capturing the program behavior. These properties are formulated using the
TPTP syntax [15]. Note that in TPTP, symbols starting with capital letters denote logical
variables which are universally (!) or existentially (?) quantified. In the rest of the paper,
we illustrate Lingva using the TPTP notation.

During program analysis, we extend the loop language with additional function
and predicate symbols, as follows. For each loop, we use an extra integer constant
n ≥ 0 denoting the number of loop iterations and introduce an extra predicate iter(X)
expressing that the logical variable X is a valid loop iteration, that is 0 ≤ X < n. Loop
variables thus become functions of loop iterations, that is a loop variable v becomes
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the function v(X) such that iter(X) holds and v(X) denotes the value of v at the
Xth loop iteration. For each loop variable v, we respectively denote by v0 and v its
initial and final values. Finally, for each array variable we introduce so-called update
predicates describing at which loop iteration and array position the array was updated.
For example, for an array bb we write updbb(X,Y, Z) denoting that at loop iteration X
the array was updated at position Y by the value Z.

For each loop, we next apply path and (scalar and array) variable analysis in order to
collect valid loop properties in the extended loop language. Within path analysis, loops
are translated into their guarded assignment representations and the values of program
variables are computed using let-in and if-then-else formulas and terms. Unlike [8], the
use of let-in formulas (let...in) and if-then-else terms (ite t) allow us to easily
express the transition relations of programs. Further, (i) we determine the set of scalar
and array program variables, (ii) compute monotonicity properties of scalars by relating
their values to the increasing number of loop iterations, (iii) classify arrays into constant
or updated arrays, and (iv) collect update array properties. As a result, for each program
loop a set of valid loop properties is derived in the extended loop language.

Example 2. Consider the kth loop of Figure 2(a). A partial set of first-order properties
generated by Lingva in the extended loop language is given in Figure 2(b). Properties
1-2 are derived during path analysis. They express the value of the scalar b during
the program path exhibiting the then-branch of the conditional within the loop and,
respectively, the loop condition. Properties 8-9 are derived during scalar analysis. They
state that the values of a are monotonically increasing at every loop iteration; moreover,
these values are exactly defined as functions of loop iterations and the initial value a0
of a. Properties 17-18 are inferred during array analysis, and express respectively, the
initial and final values of the array bb.

Symbol elimination. Within symbol elimination, for each loop we derive loop invari-
ants. For doing so, we rely on Vampire [10] and compute logical consequences of the
properties derived during program analysis. To this end, we first load the built-in theo-
ries of integers and arrays. Properties with let-in and if-then-else expressions are then
translated into first-order properties with no let-in and if-then-else terms. Unlike the ini-
tial work from [8], Lingva supports now reasoning in the first-order theories of arrays
and uses arrays as built-in data types. By using the theory axiomatisations of arrays
and integers arithmetic within first-order theorem proving, Lingva implements theory-
specific reasoning and simplification rules which allows to generate logically stronger
invariants than [8] and to prove that some of the generated invariants are redundant (as
explained in the post processing step of Lingva).

Next, we collect the additional function and predicate symbols introduced in the
program analysis step of Lingva and specify them to be eliminated by the saturation
algorithm of Vampire; to this end the approach of [9] is used. As a result, loop invariants
are inferred. Symbol elimination within Lingva is run with a 5 seconds default time
limit. This time limit was chosen based on our experiments with Lingva: invariants of
interests could be generated by Lingva within a 5 seconds time limit in all examples
we tried. The user may however specify a different time limit to be used by Lingva for
symbol elimination.
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Generated invariants using symbol elimination Annotated output program
.
.
.

tff(inv3,claim,![X0 :$int]:
aa(sk1(X0))=cc(sk1(X0)) |
˜$less(X0,$sum(b,$uminus(b0))) |
˜$lesseq(0,X0)).

.

.

.

tff(inv10,claim,![X0:$int, X1:$int,X2:$int]:
˜(sk1(X0)=X1) | ˜($sum(b0,X0)=X2) |
˜$less(X0,$sum(b,$uminus(b0))) |
˜$lesseq(0,X0) | bb(X2) = X1) ).

.

.

.

...
loop invariant
\forall integer X0;
aa[sK1(X0)]==cc[sK1(X0)] ||
!(X0<(b-b0)) || !(0<=X0);

loop invariant
\forall integer X2, integer X1;
!(sK1(X0)=X1) || !((b0+X0)=X2) ||
!(X0<(b-b0)) ||
!(0<=X0) || || bb[X2]==X1;

...
while (a < m) {

if (aa[a] == cc[a]) {
bb[b] = a;
b = b + 1;}

a = a + 1;}
...

(c) (d)

Fig. 3. Invariants and annotated code corresponding to Figure 2(a).

Example 3. The partial result of symbol elimination on Figure 2(b) is given in Fig-
ure 3(c). The generated invariants are listed as typed first-order formulas (tff) in TPTP.
The invariants inv3 and inv10 state that at every array position b0 + X0 at which
the initial array bb0 was changed, the elements of aa and cc at position bb(b0 + X0)
are equal; recall that b0 is the initial value of b. Note that the generated invariants have
skolem functions introduced: sk1(X0) denotes a skolem function of X0.

Post processing. Some of the loop invariants generated by symbol elimination are re-
dundant, that is they are implied by other invariants. In the post processing part of
Lingva, we try to minimize the set of invariants by eliminating redundant ones. As
proving first-order invariants redundant is undecidable, minimization in Lingva is per-
formed using four different proving stratgies, with a 20 seconds default time limit for
each of the strategy. The chosen strategies and their time limit were carefully selected
based on our experiments, and they involve theory-specific simplifcation rules as well
as special literal and selection functions within first-order reasoning.

After invariant minimization, Lingva converts the minimized set of invariants in
the ACSL annotation language of the Frama-C framework [2]. The input program of
Lingva is then annotated with these invariants and returned. The use of the ACSL syn-
tax in Lingva, allows one to integrate the invariants generated by Lingva in the overall
verification framework of Frama-C, formally annotate program loops with their invari-
ants, and verify the correctness of the annotated program using Frama-C.

Example 4. Figure 3(d) shows the kth loop of Figure 2(a) annotated with its partial set
of minimized invariants generated by symbol elimination.

Proving program properties. In addition to the default workflow given in Figure 1,
Lingva can be used not only for generating but also for proving properties. That is,
given a program loop with user-annotated properties, such as postconditions, one can
use Lingva to prove these properties as follows: (i) first, loop invariants are generated as
described above, (ii) second, Lingva tries to prove the user-annotated property from the
set of generated invariants. For proving program properties in the combined first-order
theories of integers and arrays, Lingva uses Vampire.
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Program ] loops ] analysed loops Average ] invariants Average ] minimized invariants
Academic Benchmarks [4, 8, 14] 41 41 213 80
Open Source Archiving Benchmarks 1151 150 198 62

Table 1. Overview of experimental results obtained by Lingva.

Example 5. Consider the simplified program given in Figure 4.
Note that the loop between lines 2-5 corre- 1 a = b = 0;

2 while (a < m) {
3 if aa[a] == cc[a] {
4 bb[b] = a; b = b+1;}
5 a = a+1;}
6 for j=0 to b-1 do {
7 assert(aa[bb[j]]=cc[bb[j]]);
8 j= j+1;}

Fig. 4. Program with assertion.

sponds to the kth loop of Figure 2(a). The code
between lines 6-8 specifies a user-given safety as-
sertion, corresponding to the first-order property
∀j : 0 ≤ j < b → aa[bb[j]] = cc[bb[j]]. This
safety assertion can be proved from the invariants
generated by Lingva (see Table 2).

3 Experiments with Lingva

We evaluated Lingva on examples taken from academic research papers on invariant
generation [4, 8, 14] as well as from open source archiving packages. Our results were
obtained using a Lenovo W520 laptop with 8GB of RAM and Intel Core i7 processor.
All experimental results are also available on the Lingva homepage.

Table 1 summarizes our experiments. The first column lists the number of examples
from each benchmark suite. The second column gives the number of problems that
could be analysed by Lingva; for all these problems invariants have been generated.
The third column shows the average number of generated invariants, whereas the fourth
column lists the average number of invariants after minimization. Note that minimizing
invariants in the post processing part of Lingva considerably decreases the number of
invariants, that is 63% in the case of academic examples and by 69% for open source
problems. In the sequel, we detail our results on each benchmark set.
Academic benchmarks. Tables 2-3 describe the results of Lingva on program loops
from [4, 8, 14], with and without conditionals. All these examples were already anno-
tated with properties to be proven. Due to the page limit, we only list some represen-
tative examples. The first column of both tables shows the programs with their origins.
The second column gives the number of generated invariants after the minimization
step of Lingva. The third column states the program annotation to be proven for each
program. Finally, the fourth column lists the invariants generated by Lingva which were
used in proving the property of column three (similarly to Example 3). Tables 2-3 show
that Lingva succeeded to generate complex quantified invariants over integers and ar-
rays, some of these invariants using alternation of quantifiers1. We are not aware of any
other tool that is able to generate invariants with quantifier alternations. We further note
that all user-provided annotations were proved by Lingva, in essentially no time, by
using (some of) the generated invariants.
Open source benchmarks. We evaluated Lingva on open source examples taken from
archiving software, such as GZip, BZip, and Tar. All together we used 1151 program
loops, out of which only 150 could be analysed by Lingva, as given in Table 1. The

1 de-skolemising skolem functions give invariants with quantifier alternations
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Loop Min. Inv. Program annotation Generated invariants implying annotation
Partition [14]
a = 0; b = 0; c = 0;
while( a < m ){
if( aa[a] >= 0){
bb[b] = aa[a];
b = b+1;}
else {
cc[c] = aa[a];
c=c+1;}

a = a+1;}

647

∀x : 0 ≤ x < b→
bb[x] ≥ 0∧
∃y : 0 ≤ y < a∧

bb[x] = aa[y]

inv1:
∀x0 : aa(sk4(x0)) ≥ 0∨

¬(0 ≤ x0) ∨ b ≤ x0

inv42:
∀x0 : 0 ≤ sk4(x0) ∧ sk4(x0) < a
inv81:
∀x0 : ¬(0 ≤ x0) ∨ b ≤ x0∨

aa(sk4(x0)) = bb(x0)

Partition Init [8]
a = b = 0;
while( a < m ){
if(aa[a] == cc[a]){
bb[b]=a; b=b+1;}

a = a+1;}

169 ∀x : 0 ≤ x < b→
aa[bb[x]] = cc[bb[x]]

inv3:
∀x0 : ¬(0 ≤ x0) ∨ ¬(x0 < b)∨

aa(sk1(x0)) = cc(sk1(x0))
inv10:
∀x0, x1, x2 : ¬(sk1(x0) = x1)∨

¬(x0 = x2) ∨ ¬(x0 < b)
∨¬(0 ≤ x0) ∨ bb(x2) = x1

Table 2. Experimental results of Lingva on some academic benchmarks with conditionals.

reason why Lingva failed on the other 1001 loops was that these programs contained
nested loops, implemented abrupt termination, bitwise operations, used pointer arith-
metic or procedure calls. We believe that extending and combining Lingva with more
sophisticated program analysis methods, such as [6, 14, 7], would enable us to handle
more general programs then we currently do.

The 150 loops on which Lingva has been successfully evaluated implemented ar-
ray copy, initialization, shift and partition operations, similarly to the ones reported
in our experiments with academic benchmarks. For these examples, Lingva generated
quantified invariants, some with alternations of quantifiers, over integers and arrays. We
were also interested to see the behavior of Lingva on these examples when it comes to
proving program properties. To this end, we manually annotated these loops with prop-
erties expressing the intended behavior of the programs and used Lingva to prove these
properties from the set of generated invariants. In all these 150 examples, the intended
program behavior was proved by Lingva in essentially no time, underlining the strength
of Lingva for generating complex invariants in a fully automated manner.

4 Conclusion
We described the Lingva tool for automatically generating and proving program prop-
erties. We reported on implementation details and presented experimental results on
academic and open-source benchmarks. Our experiments show that Lingva can gen-
erate quantified invariants, possibly with quantifier alternations, in a fully automated
manner. Moreover, the generated invariants are strong enough to prove program anno-
tations expressing the intended behavior of programs. Further work includes extending
our approach in order to better integrate theory-specific reasoning engines for improv-
ing invariant minimization.
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