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Abstract—We study the expressive power of logical interpreta-
tions on the class of scattered trees, namely those with countably
many infinite branches. Scattered trees can be thought of as the
tree analogue of scattered linear orders. Every scattered tree
has an ordinal rank that reflects the structure of its infinite
branches. We prove, roughly, that trees and orders of large
rank cannot be interpreted in scattered trees of small rank. We
consider a quite general notion of interpretation: each element
of the interpreted structure is represented by a set of tuples of
subsets of the interpreting tree. Our trees are countable, not
necessarily finitely branching, and may have finitely many unary
predicates as labellings. We also show how to replace injective
set-interpretations in (not necessarily scattered) trees by ‘finitary’
set-interpretations.

Index Terms—Composition method, finite-set interpretations,
infinite scattered trees, monadic second order logic.

I. INTRODUCTION

Monadic-second order logic (MSO) extends first-order logic

with free variables that range over subsets of the domain, and

allows quantification over them. When interpreted over trees

MSO is expressive enough to capture interesting mathematics

while still being manageable. Indeed, Rabin [20] proved that

the MSO-theory of the full binary tree T2 is decidable, and

many other logical theories have been shown decidable by

a reduction to this theory (see for instance the introductory

sections in [20]). The interpretation method is a broad term

that refers to effective reductions that are expressible logically,

by a collection of formulas.1

We consider interpretations that define, by MSO-formulas,

structures A inside trees T. Our trees are subtrees of the

countably-branching tree in the signature consisting of an

order symbol (intended to be interpreted as the ancestor

relation between nodes of the tree) and finitely many unary

predicate symbols (intended to be interpreted as labellings

of the nodes of the tree). In particular, nodes may have

infinitely many children. A commonly occurring infinite tree

is (N, <), also written ω. There are various kinds of inter-

pretations depending on whether elements of the structure A

are represented by nodes or (finite) sets of nodes of T. The

latter are called (finite) set-interpretations and the former we

1For instance, we learned in school that rational arithmetic is reducible to
integer arithmetic by coding a rational by pairs of integers. In the terminology
of this paper (Q,+,×,=) is 2-dim point-interpretable in (Z,+,×).

call point-interpretations2 (Definitions 2.6 and 2.7). Moreover,

each element of A is coded by at least one tuple of sets

(the common size of the tuples is called the dimension of the

interpretation); and if every element of A is coded by exactly

one tuple of sets then the interpretation is called injective.

Why do interpretations in trees matter?

Interpretations allow one to transfer computational and logi-

cal properties from the interpreting structure to the interpreted

structure.

Suppose that A is 1-dim point-interpretable in T. Then there

is a uniform way to translate MSO-formulas in the signature

of A to MSO-formulas in the signature of T (just replace

atoms by their definitions, and relativize quantifiers). So the

MSO-theory of A is computable in the MSO-theory of T. This

explains the long term efforts to extend MSO-decidability from

ω and T2 to their expansions by unary predicates [8], [10],

[22], [26].

Suppose A is set-interpretable in T. Then there is a uniform

way to translate FO-formulas in the signature of A to MSO-

formulas in the signature of T, and in this case the FO-

theory of A is computable in the MSO-theory of T. So the

game here is to work out which structures A, known to

have decidable FO-theory, are set-interpretable in trees with

decidable MSO. Already Büchi noticed, in the language of

automata, that the semigroup (N,+) is finite-set interpretable

in ω. In modern terminology (N,+) is (finite-word) automatic.

Also, the rational group (Q,+) is finite-set interpretable in a

decidable expansion of ω (see [19]).

What is the expressive power of the interpretation method?

The research program that tries to outline the power

of the interpretation method invariably has to prove non-

interpretability results. Traditionally these were results about

non-interpretability in expansions by unary predicates of linear

orders (known as chains) [13], [18], [21]. However there are

also non-interpretability results in graphs and trees. The Caucal

hierarchy is a sequence C0, C1 . . . of sets of graphs such that

Ci is closed under 1-dim point-interpretations. There is a graph

in Ci which is not 1-dim point-interpretable in any graph in

Cj for j < i [6].

2In the literature these are sometimes called MSO-interpretations.



A consequence of a general result in [7] is that if Pf (A) is

1-dim finite-set weak-MSO interpretable in binary-branching

T then already A is 1-dim weak-MSO point-interpretable in

T.3 In the contrapositive this is a non-interpretability result;

and indeed one of the main motivations in [7] is to reduce

set-interpretability to the simpler point-interpretability. More

recently, we learn that the real field (R,+,×) is not set-

interpretable in ω [1]. Looking at the proof we see that

it goes through for any expansion of ω. Also, the rational

group (Q,+) is not set-interpretable in ω (devoid of unary

predicates) [27]. Much work in automatic structures is about

proving that certain classes of structures are not (finite) set-

interpretable in ω or T2 (see [4], [15], [24]).

Overview

It is intuitively obvious that the more complex a tree

the more it can interpret. We add weight to this contention

by considering interpretations in trees with countably many

infinite branches. We call these scattered trees since they are

exactly the trees that do not embed the full binary tree. This

name mimics the fact that linear orders that do not embed

the rational order are called scattered orders, see [23]. The

measure of complexity associates to every order and tree A an

ordinal rank(A) (Definition 2.5). The rank of a tree reflects the

structure of its infinite branches (similar to Cantor-Bendixson

rank). All finite trees have rank 0, the line ω has rank 1, while

any tree that embeds the full binary tree T2 has rank ∞ (which

is greater than all ordinals, and thus of maximum complexity).

The rank of an order resembles Hausdorff ranks; thus ordinal

ωα has rank α. We prove, intuitively, that the rank of a tree T

limits the possible ranks of orders and trees interpretable in T.

Compare this with the fact that every countable order is point

interpretable in some expansion of the non-scattered tree T2.

We emphasize that our results are of the form ‘A is not

interpretable in any expansion of T by unary predicates’,

whether or not the expanded tree is decidable or even finitely

presented. This is in line with previous investigations of the

expressive power of interpretations in expansion of orders

(called chains) [13], [18], [21] and in expansions of trees [7].

Technical contribution and related work

Point interpretations in scattered trees: These are simpler

than set-interpretations and so proofs will not appear here. We

prove that if an order or tree A is 1-dim point-interpretable in

a tree T then rank(A) ≤ rank(T). An immediate consequence

is that neither Q nor T2 is point-interpretable in any scattered

tree. This is an analogue of the result that neither Q nor T2

is point-interpretable in any scattered chain [21][Lemma 2.2].

3The structure P(A) expands (2A,⊂) by the relations of A on singleton
sets. So P(Q) is (2Q,⊂, <) where for X, Y ∈ 2Q, X < Y if and only
if X = {x}, Y = {y} and the rational x is less than the rational y. The
structure Pf (A) is the substructure of P(A) consisting of finite subsets of A.
By weak-MSO interpretation we mean an interpretation in which additionally
bound variables vary over finite sets.

Finite-set interpretations in expansions of ω: We prove that

no scattered order or scattered tree of non-finite rank is finite-

set interpretable in any expansion by unary predicates of ω
(Section III). This generalizes an early breakthrough in the

area of automatic structures that no scattered order or scattered

tree of non-finite rank is finite-set interpretable in ω (devoid

of any unary predicate) [9].

Finite-set interpretations in scattered trees: We prove that

there is an ordinal function G such that no ordinal of rank

≥ G(α) is finite-set interpretable in any scattered tree of rank

≤ α. We may take G(n) = ωn for 0 ≤ n < ω and G(α) =
ωα+1 for α ≥ ω (Theorem 4.1).

Injective set-interpretations in scattered trees: We prove

that no ordinal of rank ≥ G(α) is injectively set-interpretable

in any scattered tree of rank ≤ α (Corollary 5.3). So nei-

ther P(Q) nor P(T2) are injectively set-interpretable in any

scattered tree (Corollary 5.4). Compare this with the fact that

P(Q) and P(T2) are injectively set-interpretable in T2. We

conjecture that neither P(Q) nor P(T2) are set-interpretable

in any scattered tree.

Finitary-set interpretations in arbitrary trees: The previ-

ous result about injective set-interpretations follows from a

theorem that is of independent interest. Even though set-

interpretations allow one to interpret uncountable structures

A, we do not study these. Instead consider the following

general question: if A is countable and set-interpretable in

(not necessarily scattered) tree T is A finite-set interpretable

in T? We do not solve this difficult problem. We establish

a result of the same principle: if A is countable and injec-

tively set-interpretable in tree T then there is an injective set

interpretation of A in T for which the domain consists of

tuples of finite sets and unlabelled-trees with finitely many

infinite branches. Thus we manage to replace injective set-

interpretations by these injective ‘finitary’-set interpretations.

Similar ideas also give: if A is countable and injectively set-

interpretable in a scattered tree T of finite rank then A is

finite-set interpretable in T. We do not know if this holds for

rank(T) = ω.

Hierachy strictness: For x a type of interpretation define

Ix
α as the set of structures that are x-interpretable in labelled

trees of rank ≤ α. Clearly if α < β then Ix
α ⊆ Ix

β . We have

proven that these sets can be separated by ordinals; moreover,

the bounds are tight. In summary, the hierarchies of injective

set-interpretations, finite-set interpretations, and 1-dim point

interpretations are strict: if α < β then Ix
α ( Ix

β .

A note about technicalities. As far as the objects of study

are concerned, the reader should have passing familiarity with

linear orders and ordinal arithmetic (see [23]) and logical

interpretations (see [14]). The central proof tool is Shelah’s

composition theorem (see [11] for a readable account). Ideas

from the proof in Section III are used in Section IV. Section V

can be read independently.

II. DEFINITIONS AND PRELIMINARIES

The structures in this paper have finite relational signatures

∆, typically of the form ∆l := {≺, P1, . . . , Pl} where ≺ is



a binary predicate symbol and each Pi is a unary predicate

symbol. In trees ≺ represents the ancestor relation and in

orders ≺ represents element comparison. The tuple P rep-

resents a labelling of the domain by elements of {0, 1}l.
In the next sections we define labelled linear orders (called

chains) and labelled trees. Informally, the trees in this paper

are subtrees of the countably-branching infinite tree of height

ω, with unordered siblings, and expanded by finitely many

unary predicates. The operations on these objects (sums) allow

us to define the scattered orders and trees. Countable means

finite or countably infinite. If unspecified structures in this

paper are countable. We reserve < for the ordering on ordinals.

We write ω for the smallest infinite ordinal. The domain of

a structure named A is written A. The expansion of A by

predicates V is written (A, V ). If B ⊂ A then write (B, V )
for the substructure of (A, V ) on domain B.

A. Labelled Orders

An l-chain is a labelled linear order L = (L,≺, P1, · · · , Pl).
If l = 0 we talk about a linear order, or just order.

Definition 2.1 (Sums of l-chains): Given order (Ind,≺ind)
and for every i ∈ Ind an l-chain Li = (Li,≺i, Pi1, · · · , Pil)
the sum

∑
Ind Li is defined as the l-chain with domain⋃

i∈Ind{i} × Li, ordering ≺ defined by (i, a) ≺ (i′, a′) if and

only if i ≺ind i
′ or (i = i′ and a ≺i a

′), and the kth unary

predicate defined by
⋃

i∈Ind{i} × Pik .

Write ω for the order type of the positive integers with the

usual order, ω⋆ for that of the negative integers, and n for the

order type of the first n positive integers.

Definition 2.2 (scattered orders and ranks): Define sets of

orders Bα and Lα by transfinite induction.

• B0 := {1}.

• Lα consists of
∑

Ind Li where Ind is finite and Li ∈ Bα.

• Bα consists of
∑

Ind Li where Ind has order type ω or

ω⋆ and for all i ∈ Ind, Li ∈
⋃

β<α Lβ .

An order L is scattered if it is in Lα for some α and the

minimal such α is called the rank of L, written rank(L). The

rank of a non-scattered order, written ∞, is defined to be

greater than all countable ordinals.4 The rank of a chain is

defined as the rank of its underlying linear order.

The rank of a countable scattered order is countable and the

rank of the ordinal written in Cantor-normal form
∑

i≤m ωαi

is α1. In particular ωα is the least ordinal of rank α. The

following pigeonhole principle for linear orders is used so

often that we isolate it here.

Lemma 2.3 (partition property for orders): If the domain

of an order L is partitioned into finitely many pieces, then

the order on at least one of the pieces has the same rank as

that of L. If L has order type ωα then at least one of the pieces

has order type ωα.

B. Labelled Trees

An l-labelled tree (or l-tree) is a structure

T = (T,≺, P1, . . . , Pl)

4Non-scattered orders can also be given an ordinal rank (see [23]) though
we do not need this notion.

. . .
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Fig. 1. An ω-sum (left), and ω-glueing.

where each Pi ⊆ T and

• T is non-empty, partially ordered by ≺ with unique

minimal element (the root r);
• every {y ∈ T | y � x} is a finite linear order.

Terminology. If l = 0 the tree is unlabelled. A node v is

a child of a node u if u ≺ v and there is no z with u ≺
z ≺ v. If every node has finitely many children the tree is

finitely branching; otherwise it is countably-branching. If b is

the smallest integer with the property that every node has at

most b children then the tree is b-ary branching. If for non-

empty T ′ ⊂ T the substructure T ↾ T ′ is also a tree (ie. has a

unique minimal element) then T′ is a subtree of T. A typical

example of a subtree is the subtree of T rooted at x ∈ T ,

written T�x and defined by the domain {u ∈ T | u � x}.

Another example is given by a downward-closed set I ⊂ T
(ie. t ≺ i ∈ I =⇒ t ∈ I). A subset X is a branch if

it is linearly-ordered by ≺ and maximal with respect to set

inclusion. Branches are subtrees and may be finite or infinite.

Definition 2.4 (tree sum): Given an unlabelled

tree (Ind,≺ind) and for every i ∈ Ind an l-tree

Ti = (Ti,≺i, Pi1, · · · , Pil) with root ri, the sum
∑

Ind Ti

is the l-tree with domain
⋃

i∈Ind{i} × Ti; ancestor relation

defined by (i, a) ≺ (i′, a′) if and only if (i = i′ and a ≺i a
′)

or (i ≺ind i′ and a = ri); and the kth unary predicate Pk

defined by
⋃

i∈Ind{i} × Pik .

Terminology. Suppose T =
∑

Ind Ti. If Ind is finite then T

is a finite sum of Tis; if (Ind,≺ind) is a linear order of type

ω then
∑

Ind Ti is an ω-sum of Tis. If (Ind,≺ind) consists of

a root r and n ≤ ω children, and Tr is a singleton tree, then

T is an (n)-glueing of Tis.

We now define ranks and scattered trees. The idea is that

ω-sums and ω-glueings increase the rank while finite sums

and finite glueings do not.

Definition 2.5 (scattered trees and ranks): Define families

of unlabelled trees Fα and Sα by transfinite induction.

• F0 consists of the unique tree with a single element.

• Gα consists of finite sums of Tis with Ti ∈ Fα.

• Fα consists of ω-sums and ω-glueings of Tis where Ti ∈⋃
β<αGβ .

A tree T is scattered if it is in Gα for some α and the

minimal such α is called the rank of T. The rank of a non-

scattered tree, written ∞, is defined to be greater than all

ordinals. The rank of a labelled tree is defined as the rank of

the unlabelled tree formed by removing the labels.

Thus the finite trees all have rank 0; the trees of rank 1 are

ω-sums or ω-glueings of finite trees, and finite sums of these.



An embedding of unlabelled tree T in unlabelled tree T′ is an

injective function f : T → T ′ such that x ≺ y =⇒ f(x) ≺
f(y). The following lore clarifies the status of scattered trees:

tree T is scattered if and only if the complete infinite binary

tree does not embed in T if and only if T has countably many

infinite branches.

C. MSO and Interpretations

Monadic second order (MSO) logic consists of MSO-

variables X,Y, Z, . . . that are interpreted as subsets of the

domain, and allows quantification over these variables. The

non-logical symbols are those from signature ∆ and the

binary predicate symbol ⊆ (representing set containment).

Atomic formulas are those using symbols from ∆ as well

as those such as X ⊆ Y . Formulas are built from atomic

formulas by applying Boolean connectives and universal and

existential quantification of variables. We use abbreviations

such as X = Y,X ⊂ Y and X ∩ Y = ∅. For convenience

we may use FO-variables x, y, z · · · since ‘X is a singleton’

is definable in MSO.

A ∆-structure A consists of a domain A and for each k-ary

predicate symbol R from ∆ a k-ary predicate RA ⊆ Ak. We

may drop the superscript in RA when we are only dealing

with one structure. An expansion of ∆-structure A by l many

predicates is a structure (A, PA
1 , · · · , P

A

l ) in the signature ∆∪
{P1, · · · , Pl} where Pi are new unary predicate symbols. A ∆-

formula is an MSO-formula in the signature ∆. Write P(A) for

the set of all subsets of A. If ϕ(X1, . . . , Xm) is a ∆-formula

and A is a ∆-structure then define

ϕA := {(S1, . . . , Sm) ∈ P(A)m | A |= ϕ(S1, . . . , Sm)}.

What types of interpretations do we consider?

The most well studied interpretations in this field are point-

interpretations — the interpreting formulas are MSO (bound

variables vary over sets) but their free variables are, effectively,

first order variables. We also consider a more general notion

called (finite-)set interpretations — here the interpreting for-

mulas have free monadic variables that vary over (finite) sets;

bound variables vary over arbitrary subsets. So in (finite-) set

interpretations elements are coded by (finite) sets. Moreover

interpretations may be multi-dim (elements are coded by tuples

of finite sets) and not necessarily injective (each element can

be coded by more than one tuple).

Definition 2.6 (set interpretation): A (d-dim) set interpre-

tation Γ (in the signature ∆) consists of ∆-formulas

∂Γ(X1), EQΓ(X1, X2), ϕ
1
Γ(X1, . . . , Xr1), · · · , ϕ

k
Γ(X1, . . . , Xrk)

where k is an integer, Xi is a d-tuple of MSO-variables and

in each formula all the variables named are distinct. Let T

be a ∆-structure. If EQΓT is a congruence on the structure

(∂ΓT, ϕ
1
ΓT, · · · , ϕ

k
ΓT) then define

ΓT := (∂ΓT, ϕ
1
ΓT, · · · , ϕ

k
ΓT)/EQΓT

,

and say that ΓT, and any structure isomorphic to it, is

set-interpretable in T via Γ. If EQΓ(X,Y ) is the formula

∧
i≤dXi = Yi then Γ is an injective set-interpretation and

ΓT is injectively set-interpretable in T via Γ. If d = 1 then

we might stress that Γ is a 1-dim set interpretation.

We consider two particular types of interpretations depend-

ing, loosely speaking, on whether the free variables are taken

to vary over elements of T or finite subsets of T.

Definition 2.7 (point- and finite-set interpretations): Let Γ
be a set interpretation. If in Definition 2.6 one replaces ∂ΓT
everywhere it occurs by ∂ΓT restricted to d-tuples of finite

sets (resp. singletons) then we say that ΓT is (d-dim) finite-

set interpretable (resp. point-interpretable) in T.

Remark 2.8: Note that because finiteness is not definable

in our trees, A may be finite-set interpretable in tree T while

not being set interpretable in T.

Example 2.9: For every n < ω there is an n-dim injective

point-interpretation of ωn in ω. For instance, δΓ(X1, · · · , Xn)
states that each Xi is a singleton {xi}; and <Γ (X,Y ) states

that the least i ≤ n such that xi 6= yi satisfies that xi <
yi. Also, ωn is injectively finite-set interpretable in ω. For

instance, take δΓ(X) to be all sets of size n and order X < Y
if the smallest integer in the symmetric difference of X and Y
is in X . The ordinal ωω is the least ordinal that is not finite-set

interpretable in ω [9]. A corollary of Theorem 3.1 is that ωω

is the least ordinal that is not finite-set interpretable in any

expansion of ω by unary predicates.

Definition 2.10 (interpretation with parameters): Let Γ be

an interpretation in the signature ∆ such that every formula

in Γ contains an additional m-tuple of free variables. Then

Γ is called an interpretation with m parameters. Let S be

an m-tuple of subsets of a tree T. Then Γ(T, S), and any

structure isomorphic to it, is said to be interpretable in T with

m parameters via Γ. A family {Bi} is interpretable in T with

m parameters via Γ if for every member Bi there exists an

m-tuple S such that Bi is isomorphic to Γ(T, S).
Example 2.11: [20] The rational order Q is injectively 1-

dim point-interpretable with one parameter in the full binary

tree T2 := ({0, 1}∗,≺pref). The parameter may be taken

as R := {0, 1}∗1 and allows one to distinguish left and

right children and so define the lexicographic ordering on

{0, 1}∗. Consequently, since every countable order embeds

in the rational order, there is a 1-dim point-interpretation Γ
such that the family of countable linear orders is injectively

interpretable in T2 with two parameters; one parameter is R
and the other picks out the domain of the countable linear

order.

The next proposition follows from the standard interpreta-

tion of the full countably-branching tree Tω in T2 [20].

Proposition 2.12: Every tree of rank α is 1-dim point-

interpretable in a binary tree of rank α.

D. Composition Theorem for Tree-sums and Order-sums

Write ∆l for the signature of order ≺ with l unary predicate

P1, · · · , Pl symbols. Thus a ∆l-structure A has the form

(A,≺, PA
1 , · · · , P

A
l ). The quantifier rank of a formula ϕ,

denoted qr(ϕ), is the maximum depth of nesting of quantifiers

in ϕ. For r, l ∈ N we denote by Form
r
l the set of formulas of



quantifier rank ≤ r and with free variables among X1, . . . , Xl

in signature {≺}. For ∆l-structures A,B write A ≡r
l B if for

every ϕ ∈ Form
r
l ,

A |= ϕ(PA

1 , · · · , P
A

l ) if and only if B |= ϕ(PB

1 , · · · , PB

l ).

Clearly ≡r
l is an equivalence relation and the set Form

r
l

is infinite. Since the signature ∆l is finite and relational the

set Form
r
l contains only finitely many semantically distinct

formulas so there are only finitely many ≡r
l -classes of ∆l-

structures. The following lemma isolates maximally consistent

formulas.

Lemma 2.13 (Hintikka lemma): For r, l ∈ N, there is a

finite set Hr
l ⊆ Form

r
l such that:

1) For every ∆l-structure A there is a unique τ ∈ Hr
l with

A |= τ(PA
1 , · · · , P

A

l ).
2) If τ ∈ Hr

l and ϕ ∈ Form
r
l , then either τ |= ϕ or τ |=

¬ϕ.5

Elements of Hr
l are called (r, l)-Hintikka formulas. For

every r, l we fix an enumeration τ1(X), . . . , τ|Hr
l
|(X) of Hr

l .

Definition 2.14 (type of a structure): For ∆l-structure A

write Tprl (A) for the unique τ(X1, · · · , Xl) ∈ Hr
l such that

A |= τ(PA
1 , · · · , P

A

l ), and call it the (r, l)-type of A.

Thus Tprl (A) effectively determines for which formulas ϕ ∈
Form

r
l it holds that A |= ϕ(PA

1 , · · · , P
A

l ). Since l is often

clear we may drop it and write Tpr(A) and r-type.

We now discuss increasingly informative versions of the

composition theorem for MSO over tree-sums and order-sums,

see [25] or [11], [12] for details. The first, lets call it weak

composition, says that the (r, l)-type of a sum depends on the

(r, l)-types of its summands.

Theorem 2.15 (weak composition for tree- and order-sums):

For every Ind, if Tprl (Ai) = Tprl (A
′
i) for all i ∈ Ind then

Tprl (
∑

Ind Ai) = Tpr
l (
∑

Ind A
′
i).

We use the following consequence of the weak composition

for orders: for every r, l there is associative binary operation

+ on the set Hr
l such that for all l-orders L1,L2 the formula

Tprl (L1) + Tprl (L2) is identical with the (r, l)-type of their

sum Tpr
l (
∑

2
Li).

Definition 2.16 (partition of Ind): Let {Ai}i∈Ind be a fam-

ily of l-structures. The Hr
l -partition (of Ind) induced by

{Ai}i∈Ind is the |Hr
l |-tuple Q where Qk := {i ∈

Ind | Tpr
l (Ai) = τk} and τk is the kth formula in the

enumeration of Hr
l . The Hr

l -expansion of (Ind,≺ind) induced

by {Ai}i∈Ind is the structure (Ind,≺Ind, Q).
With this notation weak composition states that

Tprl (
∑

Ind Ai) is determined by the Hr
l -expansion induced by

{Ai}Ind. It turns out that Tprl (
∑

Ind Ai) is already determined

by some q-type of the Hr
l -expansion. In the next version q

does not even depend on Ind:

Theorem 2.17 (composition for tree-sums): For every for-

mula ϕ ∈ Form
r
l there exists a formula θ(Y1, . . . , Y|Hr

l
|)

6 such

5Furthermore, Hr
l

is computable from r, l, and there is an algorithm that
given τ and ϕ decides between τ |= ϕ and τ |= ¬ϕ. We do not use these
facts.

6Moreover, θ is computable from ϕ, although we do not use this fact.

T1 T2 T3

τ1 τ2 τ3

Fig. 2. Illustration of composition: The r-type of the tree (left) is determined
by the q-type of the chain (right) where τi := Tpr(Ti). This q-type is called
a projected type.

that for every unlabelled tree (Ind,≺ind) and family {Ti}i∈Ind

of l-trees
∑

Ind

Ti |= ϕ ⇐⇒ (Ind,≺ind) |= θ(Q)

where Q is the Hr
l -partition induced by {Ti}i∈Ind. The

quantifier-rank of θ depends only on r and l and so is written

q(r, l).
Projected Types: The notions in the remainder of this

section are only used in Section IV. We visualise (Figure 2) the

r-type of Ti projected onto i and introduce notation to capture

this. A projected (r, l)-Hintikka formula is a (q(r, l), |Hr
l |)-

Hintikka formula. The projected (r, l)-type of family {Ti}i∈Ind

of l-trees is the (q(r, l), |Hr
l |)-type of the Hr

l -expansion of

(Ind,≺ind) induced by {Ti}Ind. Note that the projected type

determines which quantifier-rank r formulas hold in
∑

Ind Ti.

When dealing with scattered trees Ind is often ω, so the type

of an ω-sum of trees reduces to the type of an expansion of

ω. Given a family {Ti}i<n of l-trees (n ≤ ω) and m-tuple A
write PrTp(A)r[i,j) for the projected (r, l+m)-type of family

{(Tk, A)}k∈[i,j). Under this notation we have

PrTp(A)r[0,n) = PrTp(A)r[0,a) + PrTp(A)r[a,n).

The following proposition says that if elements of Γ
∑

ω Ti

are all in an ‘interval sum’ of T then Γ
∑

ω Ti is interpretable

in this interval.

Proposition 2.18: Suppose T =
∑

ω Ti is an l-tree and Γ
is d-dim set (resp. point-, finite-set) interpretation. If there

exists a < b such that T |= ∂Γ(W1, · · · ,Wd) implies

Wi ⊆
∑

i∈[a,b) Ti, then ΓT is d-dim set (resp. point-, finite-

set) interpretable in some expansion of
∑

i∈[a,b) Ti.

III. FINITE-SET INTERPRETATIONS IN EXPANSIONS OF ω

We write ∆l for the signature consisting of ≺ and l predicate

symbols.

Theorem 3.1: 1) For every finite-set interpretation Γ in

the signature ∆l there exists an integer NΓ such that for

every expansion C of ω by l unary predicates, if ΓC is a

scattered order or scattered tree then its rank is at most

NΓ.

2) In particular, no scattered order or scattered tree of non-

finite rank is finite-set interpretable in any expansion of

ω by unary predicates.

The second item immediately follows from the first. More-

over, the bound is tight since every ordinal of finite rank is

finite-set (even many-dim point-) interpretable in ω. It was



shown in [9] that no ordinal of non-finite rank is finite-set

interpretable in ω. That proof, which does not go through for

expansions of ω, inspired Theorem 3.1.

From [3, Proposition 3.1] we can conclude that a countable

structure that is set-interpretable with parameters in an expan-

sion C of ω is already finite-set interpretable with parameters

in C. Thus no countable scattered order or tree of non-finite

rank is set interpretable in any expansion of ω.

The proof of Theorem 3.1 uses the following rank properties

on a class of structures C closed under isomorphism and under

substructure:

1) Isomorphic structures in C have the same rank.

2) If A ∈ C has rank α and A is partitioned into P1, P2,

then at least one of A ↾ P1 and A ↾ P2 has rank α.

3) There is a 1-dim point-interpretationΓ with point param-

eters such that for every A of finite rank k (infinite rank)

there is a family of k− 1 (infinitely many) structures of

distinct ranks interpretable with parameters in A via Γ.

Ranks on the class C of linear orders (Definition 2.2) satisfy

these properties. For the third property use the fact that if L

has rank α then for every β < α there exist an open interval

of L of rank β. Infact the domain formula ∂Γ(x, p1, p2) may

be defined as p1 ≺ x ≺ p2 where the pis are parameters.

Similarly the class C of forests (ie. sets of trees) is closed

under substructure (unlike the class of trees) and we may

define a ranking on forests (agreeing with the ranking on trees)

satisfying these three properties as follows: the rank of a set S

of trees is the supremum of ranks of the trees in S. Theorem

3.1 is immediate from rank property 3) and the following.

Proposition 3.2: For every set interpretation Γ in the signa-

ture ∆l with m parameters there exists an integer NΓ such that

if Γ interprets a family of scattered structures (orders or trees)

{Ci}i∈I with m-many finite-set parameters in some expansion

C of ω then the number of distinct ranks amongst the ranks

of {Ci}i∈I is at most NΓ.

Proof: To help readability we prove the proposition for

1-dim interpretations and m = 1 (one parameter). However

the same proof goes through for d-dim interpretations and m
parameters — replace variables and parameters ranging over

subsets of ω by those ranging over d-tuples of subsets of ω.

We sometimes mention m and d in the proof below to help

the reader generalize.

Let q be an upper bound on the quantifier-rank of the

formulas in the interpretation Γ. Define NΓ greater than

the number of (q, l + m + 2d)-Hintikka formulas, namely

|Hq
l+m+2d|. Take a family {Cn}n∈I of scattered orders of

distinct ranks that is interpreted with m-many parameters in an

expansion (ω, p) via Γ. By assumption the m-many parameters

are restricted to be finite subsets of ω.

Notation. For the rest of this proof we use lowercase

pi, wi, . . . to refer to subsets of ω, and uppercase Li, Di, . . .
to refer to sets of subsets of ω. For z ⊂ ω write z[a, b) for

z ∩ [a, b).
For every n ∈ I: fix a finite parameter wn ⊂ ω so that

Γ(ω, p, wn) ∼= Cn; write Dn for the domain {x | (ω, p, wn) |=
∂Γ(x)}; write =n for the relation {(x, y) | (ω, p, wn) |=

EQΓ(x, y)}; write ≺n for the ordering {(x, y) | (ω, p, wn) |=
x ≺Γ y}; and write �n for ≺n ∪ =n.

For z ⊆ ω and t ∈ ω write Ln(z, t) for the set of x ∈
Dn such that x[0, t) = z[0, t). That is, Ln(z, t) consists of

elements in the domain Dn that agree with z on the initial

interval [0, t). Note Ln(z, 0) = Dn for all z.

Claim 1. For every index n ∈ I there is zn ⊆ ω such that

for every t ∈ ω the rank of (Ln(zn, t),≺n)/=n
equals the

rank of Cn.

Proof of Claim 1. Fix n and suppose zn has already been

defined on the interval [0, k) and for all t ≤ k the rank of

(Ln(zn, t),≺n)/=n
equals the rank of Cn. Partition the sets

in Ln(zn, k) into two classes V0, V1 depending on whether or

not k is in the set. By rank property 2) above at least one

of (Vi,≺n)/=n
has the same rank as Cn; say the class is

represented by ǫ ∈ {0, 1}. Put integer k in zn if and only if

ǫ = 1. •
For every n ∈ I fix zn by Claim 1. Suppose, for a

contradiction, there were more than NΓ distinct ranks amongst

the Cis. By Claim 1, and rank property 1) above, for every t
there are more than NΓ structures up to isomorphism amongst

(Ln(zn, t),≺n)/=n
(n ∈ I). Pick finite Jt ⊂ I of size

greater than NΓ indexing non-isomorphic structures (that is,

j 6= k ∈ Jt implies (Lj(zj , t),≺j)/=j
is not isomorphic

to (Lk(zk, t),≺k)/=k
). The following claim shows that the

choice of NΓ ensures that this is impossible.

Claim 2. There exists integer t and distinct indices n, k ∈
Jt such that (Ln(zn, t),≺n)/=n

and (Lk(zk, t),≺k)/=k are

isomorphic.

Proof of Claim 2. Write (ω, v)[0, t) for the structure (ω, v)
restricted to domain [0, t). By choice of NΓ, for every t there

exist distinct n, k ∈ Jt such that Tpq(ω, p, wn, zn, zn)[0, t) =
Tpq(ω, p, wk, zk, zk)[0, t). Fix an integer t that is greater than

all the integers in all the wis for i ∈ Jt; and take n, k as in

the previous sentence. So wn, wk ⊂ [0, t). For x, y ⊂ [t, ω),

Tpq(ω, p, wn, zn[0, t) ∪ x, zn[0, t) ∪ y) =

Tpq(ω, p, wn, zn, zn)[0, t) + Tpq(ω, p, ∅, x, y)[t, ω) =

Tpq(ω, p, wk, zk, zk)[0, t) + Tpq(ω, p, ∅, x, y)[t, ω) =

Tpq(ω, p, wk, zk[0, t) ∪ x, zk[0, t) ∪ y).

Immediately then

1) (zn[0, t) ∪ x) ∈ Ln(zn, t) iff (zk[0, t) ∪ x) ∈ Lk(zk, t)
2) (zn[0, t) ∪ x) ≺n (zn[0, t) ∪ y) iff (zk[0, t) ∪ x) ≺k

(zk[0, t) ∪ y), and

3) (zn[0, t) ∪ x) =n (zn[0, t) ∪ y) iff (zk[0, t) ∪ x) =k

(zk[0, t) ∪ y).

These properties ensure that the map zn[0, t)∪x
φ
7→ zk[0, t)∪x

(where x ranges over subsets of [t, ω)) induces an isomorphism

Φ : (Ln(zn, t),≺n)/=n
→ (Lk(zk, t),≺k)/=k

. Indeed Φ is a

well-defined function by item 3); it is onto by item 1); and

order-preserving by item 2). •

IV. FINITE-SET INTERPRETATIONS IN SCATTERED TREES

Theorem 4.1: There is an ordinal function G such that

no ordinal of rank ≥ G(α) is finite-set interpretable in any



labelled tree of rank ≤ α. We may take G(n) = ωn for

0 ≤ n < ω and G(α) = ωα+1 for α ≥ ω.

A. Natural Sum and Product on Ordinals

The proof has some similarities with that of Proposition

3.2 but requires additional machinery, including the use of

the natural-sum ⊕ (also called Hessenberg-sum) and natural-

product ⊗ (also called Hausdorff-product) on ordinals. These

operations were introduced in [5] and can be thought of as

addition and multiplication of polynomials in ω. The natural-

sum is a commutative, associative binary operation ⊕ on

ordinals. Suppose α =
∑

i<m ωαi and β =
∑

j<n ω
βj are

in Cantor-normal-form. Then α ⊕ β is defined as the sum

(as in Definition 2.1) of all ωαi and ωβj arranged in non-

increasing order. Similarly the natural-product is a commu-

tative, associative binary operation ⊗ on ordinals. Define

α ⊗ β as the natural sum of all ωαi⊕βj . We implicitly use

easy properties of natural ordinal arithmetic: for instance,

the natural sum or natural product of countable ordinals is

countable; if α, β < ωγ then α ⊕ β < ωγ ; if α, β < ωωγ

then α ⊗ β < ωωγ

. Here is a central property of ⊗. A

function f : (α1 × · · · × αk) → γ is coordinate-wise non-

decreasing if for all (δ1, · · · , δk) in the domain of f and all

n ≤ k and all ordinals δ with δn ≤ δ < αn, it holds that

f(δ1, · · · , δk) ≤ f(δ1, · · · , δn−1, δ, δn+1, . . . , δk).

Lemma 4.2: [5] If f : (α1 × · · · × αk) → γ is onto and

coordinate-wise non-decreasing then γ ≤ α1 ⊗ · · · ⊗ αk.

B. Proof of Theorem 4.1

We illustrate the proof for dimension 1 to get a function

G1 and remark at the end how to deal with dimension d. It is

enough to find a function G1 such that if ωδ is 1-dim finite set

interpretable in a tree of rank α then δ < G(α) (this is because

ωrank(β) ≤ β and the ordinals that are finite-set interpretable

in expansions of T are closed downwards). To this end, say ωδ

is finite-set interpretable in the l-tree T of rank α via Γ. Write

D for the domain of the interpretation; ≺ for ≺ΓT, and =Γ for

EQΓT. Since (D,≺)/=Γ
is isomorphic to ωδ, say via bijection

f , for every ordinal x < ωδ pick a unique element in D from

the equivalence class f−1(x) and call it the code of x. Let r
be the largest quantifier-rank appearing in formulas of Γ. For

the remainder write PrTp(A)[i,j) instead of PrTp(A)r[i,j).

A note on the structure of the proof. We induct on α to

bound δ. For the base case G1(0) := 1 (since no infinite

structure is interpretable in a finite one). For the remainder

suppose α > 0. We consider two cases: the first is that T is

an ω-sum of Tis of lower rank (these we call Case 1 trees);

and the second is that T is a finite sum of Case 1 trees (called

Case 2 trees). The case that T is an ω-glueing is reduced to

these cases by Proposition 2.12.

Notation. For the rest of this proof we use lowercase

pi, wi, . . . to refer to subsets of T , and uppercase L,R, . . .
to refer to sets of subsets of T .

Case 1. Say T is an ω-sum of Tis of lower rank. For interval

[a, b) write T [a, b) for the set ∪i∈[a,b)Ti.

The aim is to bound every β < δ in terms of r, l, d and

G1(α
′) (for α′ < α). So take arbitrary β < δ and write

w ∈ D for the code of ωβ . By Lemma 2.3 (partition property

for orders) for all t there exists projected (r, l+ 2d)-Hintikka

formulas λw,t and ρw,t such that

Dw,t := {x ∈ D | x ≺ w and PrTp(w, x)[0,t) = λw,t

and PrTp(w, x)[t,ω) = ρw,t}

ordered by ≺ has order type ωβ . Define sets Lw,t as

{y ⊂ T [0, t) | y finite and PrTp(w, y)[0,t) = λw,t}

and Rw,t := {z ⊂ T [t, ω) | z finite and PrTp(w, z)[t,ω) =
ρw,t}.

In other words, every x ∈ Dw,t satisfies that x∩[0, t) ∈ Lw,t

and x ∩ [t, ω) ∈ Rw,t. Define binary relations ≺L,w,t and

=L,w,t on Lw,t by

y ≺L,w,t y
′ if ∃z ∈ Rw,t y ∪ z ≺ y′ ∪ z

y =L,w,t y
′ if ∃z ∈ Rw,t y ∪ z =Γ y

′ ∪ z

and binary relations ≺R,w,t and =R,w,t on Rw,t by

y ≺R,w,t y
′ if ∃z ∈ Lw,t y ∪ z ≺ y′ ∪ z

y =R,w,t y
′ if ∃z ∈ Lw,t y ∪ z =Γ y

′ ∪ z

Let #w denote the smallest s such that w ⊂ T [0, s]. We will

show that (‡) for t > #w we can replace ∃z by ∀z in the

above definitions.

Lemma A. For t > #w, both (Lw,t,≺L,w,t)/=L,w,t
and

(Rw,t,≺R,w,t)/=L,w,t
are well-orders.

We defer the proof of Lemma A. Write βL,w,t and βR,w,t

for their respective order types and note (⋆) that each is at

most ωβ . The map Φ : βL,w,t × βR,w,t → ωβ (induced by

(y, z) 7→ y∪ z) is surjective by definition of Lw,t and Rw,t. It

is co-ordinate wise non-decreasing by (‡). Apply Lemma 4.2

to conclude (⋆⋆) that ordinal ωβ is at most βL,w,t ⊗ βR,w,t.

The order (Lw,t,≺L,w,t)/=L
is finite-set interpretable in

T[0, t) (by Proposition 2.18). This tree has some rank α′ < α,

so apply induction and conclude (⋆⋆⋆) that βL,w,t < ωG1(α
′).

All that is left is to bound βR,w,t. For this we use a pigeonhole

argument.

Lemma B. If w′ codes ωβ′

(β′ < δ) then for t > #w,#w′,

if λw,t = λw′,t and ρw,t = ρw′,t then βR,w,t = βR,w′,t.

We defer the proof of Lemma B. Define γ(α) :=
supα′<αG1(α

′) and pick a sequence of ordinals γi such that

γ0 := γ(α) and (†) γi+1 > γ0 ⊕ γi.
Let n be the number of projected (r, l + 2d)-Hintikka

formulas and set N := n2 + 1. Suppose, for a contradiction,

that γN ≤ β. Then each ordinal ωγi (0 ≤ i ≤ N ) has a

code, say wi ∈ D. For all t > max0≤i≤N #wi there exist two

indices c < d ≤ N such that λwc,t = λwd,t and ρwc,t = ρwd,t

(by choice of N ). Then

ωγd ≤ βL,wd,t ⊗ βR,wd,t (by ⋆⋆)

< ωγ0 ⊗ βR,wd,t (by ⋆ ⋆ ⋆)

= ωγ0 ⊗ βR,wc,t (by Lemma B)

≤ ωγ0 ⊗ ωγc (by ⋆)



which equals ωγ0⊕γc , contradicting (†). Thus β < γN and

we have bound the arbitrarily chosen β in terms of r, l, d and

G1(α
′) for α′ < α. This achieves the aim. We conclude that

the δ ≤ γN . Of course as r, l and d vary there is no bound on

N . Thus define G1(α) := supi γi so that δ < G1(α).
To be concrete, take γi+1 := (γ0 ⊕ γi) + 1, so supi γi =

γ0 × ω. There are four cases: 1) if 1 ≤ α < ω then γ(α) =
G1(α − 1) = ωα−1 and so G1(α) = ωα; 2) if α = ω then

γ(ω) = supn<ω ω
n = ωω and so G1(ω) = ωω+1; 3) if α > ω

is a successor β + 1 then γ(α) = G1(β) = ωβ+1 = ωα

and so G1(α) = ωα+1; 4) if α > ω is a limit ordinal then

γ(α) = supα′<α ω
α′+1 = ωα and so G1(α) = ωα+1.

Proof of Lemma A. For t > #w, y, y′ ∈ Lw,t

and z, z′ ∈ Rw,t we claim PrTp(w, y, y′, z)[0,ω) =
PrTp(w, y, y′, z′)[0,ω) and PrTp(w, y, z, z′)[0,ω) =
PrTp(w, y′, z, z′)[0,ω). We prove the first equality (the

second is similar). Recall that + is the operation summing

types of chains. Then PrTp(w, y, y′, z)[0,ω) equals

PrTp(w, y, y′, z)[0,t) + PrTp(w, y, y′, z)[t,ω) =

PrTp(w, y, y′, ∅)[0,t) + PrTp(∅, ∅, ∅, z)[t,ω) =

PrTp(w, y, y′, z′)[0,t) + PrTp(∅, ∅, ∅, z′)[t,ω) =

PrTp(w, y, y′, z′)[0,t) + PrTp(w, y, y′, z′)[t,ω) =

PrTp(w, y, y′, z′)[0,ω).

To go from the second line to the third line use that

PrTp(∅, ∅, ∅, z)[t,ω) is determined by PrTp(∅, z)[t,ω) which

is ρw,t by definition of Rw,t. Since z′ ∈ Rw,t then also

PrTp(∅, ∅, ∅, z′)[t,ω) is determined by ρw,t.

Thus for t > #w, we can replace ∃ by ∀ in the definitions

of ≺L,w,t and =L,w,t, and ≺R,w,t and =R,w,t. For example,

if y, y′ ∈ Lw,t and z ∈ Rw,t and y ∪ z =Γ y
′ ∪ z, then for all

z′ ∈ Rw,t it holds that y ∪ z′ =Γ y
′ ∪ z′. It is now immediate

that both (Lw,t,≺L,w,t)/=L,w,t
and (Rw,t,≺R,w,t)/=L,w,t

are

well-defined well-orders.

Proof of Lemma B. First note Rw,t = Rw′,t since

PrTp(w, z)[t,ω) = PrTp(∅, z)[t,ω) = PrTp(w′, z)[t,ω). Sec-

ond by the reasoning in Lemma A and using λw,t = λw′,t we

see that if y1, y2 ∈ Rw,t and z ∈ Lw,t with y1 ∪ z � y2 ∪ z
then for all z′ ∈ Lw′,t it holds that y1 ∪ z′ � y2 ∪ z′.

Case 2. Say T =
∑

i∈Ind Ti is a finite-sum of type 1 trees

each of rank α. We prove ωδ < ωG1(α). By Lemma 2.3

(partition property for orders) we may assume that for every

i ∈ Ind there is a type τi such that if x ∈ D then (Ti, x∩ Ti)
has type τi. Define Di := {x ∩ Ti | x ∈ D} and a binary

relation ≺i onDi by x ≺i y if ∃z ∈ D x∪(z\Ti) ≺ y∪(z\Ti),
and similarly a binary relation =i. By the same composi-

tional reasoning as above (Di,≺i)/=i
is well-ordered and

≤ ωδ, say of type ηi. By a fact similar to Proposition 2.18

ordinal ηi is finite-set interpretable in (Case 1 tree) Ti, thus

ηi < ωG1(α). The function sending (x1, · · · , x|Ind|) 7→ ∪xi
from D1 × · · · ×D|Ind| → D induces a surjective co-ordinate

wise non-decreasing function η1 × · · · × η|Ind| → ωδ. Thus

ωδ ≤ η1 ⊗ · · · ⊗ η|Ind|. But since each ηi < ωG1(α) and

since G1(α) is a power of ω, we see that ωδ < ωG1(α). Thus

rank(ωδ) = δ < G1(α).

Finally, the same proof goes through for d-dim interpreta-

tions (replace variables by tuples of variables and make minor

changes in notation). And the dimension d has no effect on

Gd; that is Gd = G1. Thus define G := G1 to complete the

proof.

The proof just presented can be adapted to scattered rank α
trees of height ω+1, in particular to completions T̂. We explain

the terminology. A ‘well-founded tree’ is one in which every

set of the form {y | y � x} is a (not necessarily finite) well-

founded set. The height of a well-found tree is the supremum

of the order types of these sets. Thus the trees as defined in

Section II-B have height ≤ ω. Writing [T] for the infinite

branches of T define the completion of a tree T, written T̂, as

the partial order whose domain is T ∪ [T] and for which u is

below v if either u, v ∈ T and u ≺T v, or u ∈ T, v ∈ [T] and

u ∈ v (that is, u is a node on infinite branch v). If T has height

≤ ω then [T] has height ≤ ω+ 1. To define scattered trees of

height ω + 1 we replace ω-sums by ω + 1-sums
∑

i<ω+1 Ti

where Tω is a tree with exactly one element.

Corollary 4.3: Let G be the function from Theorem 4.1.

No ordinal of rank ≥ G(α) is finite-set interpretable in the

completion of any labelled tree of rank ≤ α.

Proof Sketch: The composition theorem holds for well-

founded trees, so we can run the proof of Theorem 4.1 with

the following modifications: at the start of Case 1, partition

the domain depending on whether the set hits Tω or not. It

is sufficient to deal with each of these domains. The latter

case is as before. For the former case replace [t, ω) by [t, ω],
and define #s as the smallest integer (exclude ω). In Lemma

A for instance PrTp(w, y, y′, z)[ω,ω] = PrTp(w, ∅, ∅, z)[ω,ω],

which is, now, also independent of the set w. This yields the

same function G.

V. REPLACING SET-INTERPRETATIONS BY SIMPLER

INTERPRETATIONS

If A is finite-set interpretable in T then A is necessarily

countable. A general problem, that we do not solve, states:

Problem 5.1: If A is countable and set-interpretable in (not

necessarily scattered) tree T, is A finite-set interpretable in T?

Here is our contribution.

Theorem 5.2: For every injective set interpretation Γ there

exists injective set interpretation Γf such that (for labelled tree

T that is not necessarily scattered) if ΓT is countable then

1) ΓT is set interpretable in T via Γf , and

2) every set in every tuple in the domain of ΓfT is either

a finite subset of T or a finite union of infinite branches

of T.

Corollary 5.3: Let G be the function from Theorem 4.1.

No ordinal of rank ≥ G(α) is injectively set-interpretable in

any labelled tree of rank ≤ α.

Proof: Since a finite subset of T̂ is, modulo interpretation,

a union of finite sets and finitely many infinite branches,

Theorem 5.2 states that if A is countable and injectively

set interpretable in T then A is finite-set interpretable in the

completion T̂. Apply Corollary 4.3.



Corollary 5.4: Neither P(Q) nor P(T2) is injectively set-

interpretable in any scattered tree.

Conjecture 5.5: Neither P(Q) nor P(T2) is set-interpretable

in any scattered tree.

A. Proof Plan

Given an MSO-formula ϕ the aim is to define an MSO-

formula CODE such that for every tree T for which ϕT is

countable:

• CODE is an injective function with domain ϕT,

• the range of CODE consists of tuples whose sets are either

finite subsets of T or finite unions of finitely many infinite

branches of T.

If ϕ is the domain formula of an injective set-interpretation

Γ then define finitary interpretation Γf as follows: its domain

formula expresses that X is in the range of CODE, its ith
relation formula, say of arity n, expresses that there exist Y js

such that CODE(Y j , Xj) and φiΓ(Y 1, · · · , Y n) (where φiΓ is

the ith relation formula in the interpretation Γ). Injectivity

ensures that CODE is an isomorphism between ΓT and ΓfT.

In section V-B we discuss structural properties of ϕT. In

section V-C we provide a first coding that when applied to

finitely-branching tree T codes V (for T |= ϕ(V )) by a subtree

with finitely many (finite and infinite) branches as well as a

labelling of this subtree. In section V-D we sketch how to

replace the labelling of the finitely many infinite branches by a

tuple of finite sets. If the first coding is applied to a countably-

branching tree T we still obtain a subtree with finitely many

infinite branches, but now it may also contain infinitely many

finite branches. In the full version of the paper we show how

to replace the labelled subtree consisting of the finite branches

with a tuple of finite sets.

B. Structural Properties

The definitions and ideas of this section are from [2].

Definition 5.6 (U -trees and D-trees): Let T be an l-tree, V
a k-tuple and r an integer. If there exists W 6= V (tuples of

subsets of T ) with Tpr(T,W ) = Tpr(T, V ) then call (T, V )
a D-tree wrt. r, k. Otherwise call (T, V ) a U -tree wrt. r, k.

Definition 5.7 (trunk): Define trunkr(T, V ) as the set of

nodes u ∈ T such that the subtree of (T, V ) rooted at u is a

D-tree wrt. r, k.

Lemma 5.8: The set trunkr(T, V ) is MSO-definable in

(T, V ) and downward closed.

We can decompose a tree along a downward closed set:

Definition 5.9 (tree decomposition): Let T be an l-tree and

I ⊂ T a downward closed set. For i ∈ I define Ti as those

t ∈ T such that i � t and there is no i′ ∈ I with i ≺ i′ � t.
As usual write Ti for the substructure of T restricted to Ti.
We call the family {Ti}i∈I the I-decomposition of T.

If {Ti}i∈I is the I-decomposition of T then T is isomorphic

to
∑

i∈I Ti and the Hr
l -partition of I induced by {Ti}i∈I is

definable in T expanded by I .

Lemma 5.10 (interpretability of Hr
l -expansion): For every

r, l there is a 1-dim injective point interpretation Γ such that for

every tree T and downward closed I ⊂ T — writing {Ti}i∈I

for the I-decomposition of T — Γ(T, I) is isomorphic to the

Hr
l -expansion of (I,≺) induced by {Ti}i∈I .

Proposition 5.11 (trunk is finitary): Let ϕ be a formula of

quantifier-rank r and T a labelled tree. If ϕT is countable

then for every V satisfying ϕ in T — writing {Ti} for the

trunkr(T, V )-decomposition of (T, V ) —

1) All but finitely many Tis are U -trees.

2) The set trunkr(T, V ) is a union of a finite set and a

finite set of infinite branches.

C. First Coding

Suppose T is an l-tree, ϕT is countable and r is the

quantifier-rank of ϕ(X1, · · · , Xm). For V such that T |= ϕ(V )
let {Ti} be the trunk := trunkr(T, V )-decomposition of tree

(T, V ). Write E for finite set of i ∈ trunk such that Ti is a

D-tree. Write BUDS for the set of children of the root of Ti

for i ∈ E. We can code m-tuple V by the following data:

1) a pair (F,B) where F,B partition trunk, F is a finite

set, and B is a finite set of infinite branches,

2) the Hr
l+m-partition of F induced by {Ti}i∈F ,

3) the Hr
l+m-partition of B induced by {Ti}i∈B ,

4) the Hr
l+m-partition of BUDS induced by

{(T�s, V )}s∈BUDS .

This coding is injective: we argue that the coding of V
uniquely determines V . Consider j ∈ trunk. If Tj is a U -

tree then V ∩ Tj is determined by the data in 2) and 3); if Tj

is a D-tree then consider i ∈ T�s for some child s ∈ BUDS of

the root of Tj . Then V ∩ T�s is determined by the data in 4)

since it is a U -tree. Moreover V ∩{j} is determined by 2) and

3). The coding is MSO-definable: indeed, F,B are definable

from trunk which is definable by Lemma 5.8, partitions are

definable by Lemma 5.10, and E and BUDS are definable since

the set of D-trees (wrt. r, k) are definable.

The predicates in 1) and 2) are finitary: F is a finite set,

its partition is a tuple of finite sets, and B is a finite set of

infinite branches. Two tasks remain.

Task 1. The predicates in 3) label the subtree on domain

B. In Section V-D we sketch how to code this labelling by a

tuple of finite sets.

Task 2. If T is finitely-branching then each predicate in

4) is a finite set. In the full version we show how, if T is

countably-branching, to code the possibly infinite set BUDS

and its Hr
l+m-partition by a tuple of finite sets.

D. Dealing with Infinite Labelled Branches (Task 1)

Proposition 5.12: [2] For ∆l-formula ϕ(X1, · · · , Xm)
there is ψ such that for every l-tree T and every branch Ib
of T — writing C = (Ib,≺, Q) for the Hr+m

l -expansion of Ib
induced by the Ib-decomposition of T — the following holds

for all W : C |= ψ(W ) if and only if there exists V such that

1) T |= ϕ(V ), and

2) W is the Hr
l+m- partition of Ib induced by the Ib-

decomposition of (T, V ).

In particular if ϕT is countable then ψC is countable.

Definition 5.13: For sets X,Y ⊂ T , write X =end Y to

mean that the symmetric difference of X and Y is finite (and



say that X and Y have the same end). This notion extends to

k-tuples: write X =end Y if Xi =end Yi for all i ≤ k.

Proposition 5.14 (definable ends in ω): For every ∆s-

formula ψ(X1, · · · , Xn) there exist a constant M :=M(s, n)
and formulas Ψ1(X), · · · ,ΨM (X) such that for every s-chain

C over ω there exist M -many tuples W 1, · · · ,WM such that

if ϕC is countable then

1) C |= ψ(V ) implies there is i ≤M with W i =end V .

2) the only tuple satisfied by Ψi in C is W i.

The first item appears in [16]. The second uses the selection

property for ω-chains: a formula α(X) is a selector for formula

β(X) over a class of structures C if the following conditions

hold in C: 1) there is at most one X with α(X); 2) for all X
if α(X) then β(X); 3) if there exists Y with β(Y ) then there

exists X with α(X). Every MSO-formula β has a selector

α, also an MSO-formula, over the class of all expansions

of ω by unary predicates, see [17], [22]. Since a branch of

T is isomorphic to ω, from Propositions 5.12 and 5.14, and

Lemma 5.10 we get:

Proposition 5.15 (definable ends along a branch): For ev-

ery ∆l-formula ϕ(X1, · · · , Xm) of quantifier rank r there

exists a constant M and MSO-formulas Φ1, · · · ,ΦM such that

for every l-tree T with ϕT countable, if Ib ⊂ T is an infinite

branch of T and {Ti}i∈Ib is the Ib-decomposition of T then

there exist M -many tuples W 1, · · · ,WM over Ib such that

1) T |= ϕ(V ) implies some W j has the same end as the

Hr
l+m-partition of Ib induced by {(Ti, V )}i∈Ib .

2) W i is the unique tuple satisfied by Φi in (T, Ib).

We sketch how to finish Task 1. Recall we have to encode,

by a tuple of finite sets, the Hr
l+m-partition of B induced by

{Ti}i∈B (where {Ti} is the trunkr(T, V )-decomposition of

(T, V )). One set stores, for each of the finitely many branches

I in B, an index n ≤ M such that the Hr
l+m-partition of I

induced by {Ti}i∈I has the same end as tuple defined by Φn.

The same set stores from which point of I onwards the tuples

agree. In fact the index for I can be coded as a label of a

definable node y of I that is on no other branch of B (see

formula ǫ below). Also mark the ≺-least node z of I above

y from which point on the tuples agree. Finally we need to

store the restriction of the partition to all nodes below z. This

data can be stored in a tuple of finite sets, and determines the

Hr
l+m-partition of B. We now argue that it is MSO-definable.

Formally, apply Proposition 5.15 to the domain formula of

Γ. This gives M and Φ1, · · · ,ΦM . For n ≤M define formula

µn(V , I) stating that I is an infinite branch of trunkr(T, V )
and n is the least integer with the property that the unique

tuple Wn over I satisfying Φn has the same end as the Hr
l+m-

partition of I induced by {Ti}i∈I ; if furthermore Wn and the

mentioned Hr
l+m-partition of I agree on {i ∈ I | z � i} then

write νn(V , I, z). Define an auxiliary formula ǫ(X, x) stating

that X is an infinite branch and x is the ≺-minimal element

such that x is on X and no two elements of B above x are

≺-incomparable.

Finally, code the Hr
l+m-partition of B induced by {Ti}i∈B

by |Hr
l+m|-tuple of finite sets H and M -tuple of finite sets G:

1) For every n ≤ M : z ∈ Gn if and only there exists I, y
such that µn(V , I) and ǫ(I, y) and z is the ≺-minimal

element such that y � z and νn(V , I, z);
2) H is the restriction of the Hr

l+m-partition of B induced

by {Ti}i∈B to the finite set
∨

n≤M{u | ∃z ∈ Gnu � z}.
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[2] V. Bárány, L. Kaiser, and A. Rabinovich, “Expressing cardinality
quantifiers in monadic second-order logic over trees,” Fundamentae

Informaticae, vol. 100, pp. 1–18, 2010.
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