
Controller Synthesis for Pipelined Circuits Using Uninterpreted Functions

Georg Hofferek and Roderick Bloem
Institute for Applied Information Processing and Communications (IAIK),

Graz University of Technology, Austria
{georg.hofferek, roderick.bloem}@iaik.tugraz.at

Abstract—We present a novel abstraction-based approach to
controller synthesis based on the use of a logic with uninter-
preted functions, arrays, equality, and limited quantification.
Extending the Burch-Dill paradigm for the verification of
pipelined processors, we show how to use this logic to synthesize
the Boolean control of a pipelined circuit, using a sequential
version as the specification. Thus, we tackle the main difficulty
in constructing concurrent systems, that of constructing a
control that prevents conflicts due to concurrency. At the same
time, we avoid the complexity of the datapath, taking advantage
of the fact that it must mirror the operations in the sequential
variant.

We start with the controller’s specification, an equivalence
criterion written in a fragment of second-order logic, stating
that for all possible inputs/states, there exist Boolean control
values such that the outcome is correct. We show how to
decide such formulas by a reduction to propositional logic.
From this formula, we can then extract the controller. We
show preliminary results for a simple pipelined system.

Keywords-controller synthesis; pipelined circuits; uninter-
preted functions; array property fragment; equality logic; first-
order logic

I. INTRODUCTION

In concurrent systems, we can distinguish the computation
of the results from the logic that ensures that concurrent
operations are performed properly. In hardware, these roles
are taken by the datapath and the control logic. Although
the implementation effort for the datapath does not increase
much when moving from a sequential to a concurrent
setting, the control logic becomes much more intricate.
At the same time, datapaths are hard to specify formally,
but the requirements for the control logic are often very
simple. For instance, the requirement may merely be that
the sequential and parallel version of the system produce
the same results. Thus, the control logic is a perfect target
for formal verification.

This observation underlies the Burch-Dill paradigm of
pipelined processor verification [9]. In this paradigm, the
datapath of a processor is abstracted away almost completely
using uninterpreted functions, and verification focusses on
the pipeline control. A non-pipelined version of the same
processor (which is significantly simpler to construct) is used
as a specification.

This work was supported in part by the European Commission through
project DIAMOND (FP7-2009-IST-4-248613), and by the Austrian Science
Fund (FWF) through the national research network RiSE (S11406-N23).

In this paper, we propose to extend the verification of
pipelined processor control to its automatic synthesis. Thus,
we aim at the automatic construction of that part of the
system that is easiest to specify, yet hardest to implement and
test. The synthesis of such logic is an instance of controller
synthesis [30]. It could be performed using standard bit-
level temporal logic synthesis tools, but that approach scales
badly with the width and complexity of the datapath, which
includes the Arithmetic Logic Unit (ALU).

Following Burch and Dill, we use commutativity of a
diagram relating the behavior of the ISA model and the
pipelined processor as a sufficient criterion for correctness.
The correctness criterion is equivalent to the validity of a
formula in the quantifier-free logic of equality, uninterpreted
functions, and arrays, where uninterpreted functions are used
to model such elements as the ALU or decoding logic, and
arrays are used to model memory and the register file. For
synthesis, we obtain a formula with limited quantification.
We will assume that all control signals are Boolean, which
means that decidability is easily established using an expan-
sion that is exponential in the number of control signals.

As the first contribution of this paper, we will show
how to decide the formula using reductions that roughly
follow those used in the quantifier-free case. Our decision
procedure has the benefit that we do not necessarily incur
the exponential explosion. As a second contribution, we
will show how to automatically extract an implementation
of the controller from the formula. We will present two
such ways. One is based on Binary Decision Diagrams
(BDDs) and cofactors, the other one utilizes interpolating
SAT solvers. We show a proof-of-concept implementation
(based on BDDs) of our approach that has not yet been
optimized for efficiency.

The pipelined circuits considered in this paper are still
preliminary and do not consider liveness aspects. Ensuring
progress makes the correctness criteria a little more compli-
cated [24]. At the moment, we only consider properties that
are captured by a Burch-Dill-style verification condition.

Recently, there has been a proliferation of approaches for
temporal logic synthesis [10], [23], [29], [19], [31], [14],
[32], [4], [27]. Although quite successful, these approaches
appear less applicable to controller synthesis because of
the lack of abstraction. In program repair [20], predicate
abstraction has been used [16], but uninterpreted functions

have not. Synthesis of synchronization skeletons has been
described by Clarke and Emerson [11]. More recent work
on the issue was done by Vechev et al. [36]. They tackle
the problem of inserting synchronization statements into
concurrent programs. Like us, they assume that the basic
computation has been implemented and only the concur-
rency aspect must be synthesized. Their approach is based
on predicate abstraction, but the standard option of refining
the abstraction is complemented by the option of modifying
the program to assure atomicity of a sequence of state-
ments. There are of course other approaches to abstraction
in game-based settings (e.g., [12]), but to our knowledge
none that use uninterpreted functions. Solar-Lezama [33]
presents program sketching, an approach where the user only
sketches the high-level idea of a program, while low-level
details are handled by the synthesis procedure. Srivastava
et al. [35] describe how program verification can, in some
circumstances, be generalized to program synthesis. Kuncak
et al. [22] deal with functional synthesis, which is more
data-oriented.

The work which has the most similar goals to ours is,
however, by Nurvitadhi et al. [28]. They also present a
method to automatically construct pipeline control. Their
approach is quite different from ours. They perform data-
hazard analysis and resolution, while we start from a
logic specification, a Burch-Dill-style verification condition,
and perform correct-by-construction synthesis. We present
a formal proof that our synthesis results fulfil the initial
specification. Besides the fundamental internal differences,
there are also some differences from a user’s point of view.
E.g., our approach does not need manually implemented
“read-enable” and “write-enable” signals, nor do we impose
the restrictions of [28] on the structure of the write interface
of the pipeline. On the other hand, we do require a complete
datapath of the pipeline, including potential forwarding
paths.

The rest of this paper is organized as follows. In Section
II we will revisit necessary preliminaries for our method.
Section III introduces how to formulate equivalence criteria
for pipelined circuits, illustrated by a running example. In
Section IV will formally define these equivalence criteria
and show that they are decidable. In Section V we present
several reduction steps that reduce equivalence criteria to
equivalent propositional formulas. Subsequently, we show
in Section VI how to extract functions for control signals
from a reduced equivalence criterion. In Section VII we will
present first results obtained with our method, and Section
VIII concludes the paper.

II. PRELIMINARIES

A. Pipelined Circuits

Pipelining is a design technique that is used to shorten
the longest combinational path within a circuit and thus
facilitates operation at higher clock frequencies. It is used in

particular in many modern microprocessors. Execution of a
single instruction is broken down into steps like fetching the
instruction from memory, decoding the instruction, fetching
necessary operands (if any), actually executing the instruc-
tion, and writing back the result. The concrete division into
pipeline steps as well as the number of stages may of course
vary.

However, pipelining also comes with some difficulties.
For example, one stage of the pipeline might need results
that have not yet been written back to memory, but are
still being processed in some later pipeline stage. In such
a case it must be possible to forward the data directly
from one stage to another. The decision whether to use
forwarded data or data read from memory must be taken by
the pipeline controller, based on the sequence of instructions
and operands that is currently being processed. Sometimes
it might also be necessary to stall the pipeline, to wait for
results to become available.

B. Array Property Fragment

The Theory of Arrays TA is a first-order theory, axiom-
atized by McCarthy [25]. It allows formal reasoning about
arrays, by specifying axioms that describe how reading from
and writing to an array works. To establish notation, we will
write A[i] to denote the value of array A at index i. By
A{j ← x}, we denote an array identical to A, except that
the value at index j equals x. In other words,

A{j ← x}[j] = x and ∀i 6= j . A{j ← x}[i] = A[i].

This is called the write axiom. For convenience, we use the
shorthand notation A = B when we mean ∀i . A[i] = B[i].

Bradley et al. [6] have identified a decidable fragment
of TA which they call the Array Property Fragment. In
the following, we will focus on properties of arrays with
uninterpreted indices, as presented in [7].

An array property is a formula of the following form:

∀i . Fī → Gī

where i is a tuple of variables, Fī is the so-called index
guard, and Gī is the value constraint. The index guard must
conform to the following grammar:

iguard → iguard ∧ iguard | iguard ∨ iguard | atom
atom → var = var | evar 6= var | var 6= evar | >

var → evar | uvar

where uvar is any of the universally quantified variables
from i, and evar is an unquantified variable or a constant.

In the value constraint Gī, universally quantified variables
may only occur inside array reads A[i]. Furthermore, nested
reads like A[B[i]] are disallowed.

Bradley et al. [7] present an algorithm to reduce formulas
with array properties to equisatisfiable formulas over the
theory of uninterpreted functions. The main step of the

algorithm is the reduction of universal quantification to a
finite conjunction over a so-called index set I. The index set
is the union of all terms that are used for array read access
(unless they are universally quantified variables), all terms
that occur as an evar during the parsing of the index guards,
and the special term λ (representing “any other index”).
Bradley et al. prove that it suffices to consider these finitely
many indices to prove or disprove satisfiability. More details
on the reduction algorithm and the aforementioned proof of
correctness can be found in [7].

C. Uninterpreted Functions

Uninterpreted Functions are function symbols within first-
order formulas, which are not axiomatized beyond functional
consistency [21]. I.e., the only thing that is known about such
a function is that it returns the same output value, when given
equal input values. More formally, for an n-ary function F
the following holds:

∀t1, . . . , tn, t′1, . . . , t′n .
∧
i

(ti = t′i)→

F (t1, . . . , tn) = F (t′1, . . . , t
′
n).

This axiom holds the key to Ackermann’s reduction [1]
to equality logic. In short, all instances of function calls
are replaced with fresh domain variables. The formula is
then amended with functional consistency constraints which
enforce equality between the fresh variables when there is
equality between all the arguments of their respective func-
tion calls. A detailed explanation of Ackermann’s reduction
can be found in [21].

D. Equality Logic

Equality logic is a first-order logic with one special
(interpreted) predicate symbol “=”, representing equality
(with the expected semantics). It allows reasoning about
elements of a domain, e.g., integers, reals, or (finite or
infinite) subsets of them.

Bryant and Velev [8] show how a formula in equality logic
can be reduced to one in propositional logic. Their method
is based on constructing a non-polar equality graph and
inferring transitivity constraints from it. These constraints
are then added to the propositional skeleton of the for-
mula. The propositional skeleton is the propositional formula
which is obtained by replacing every equality literal with a
fresh Boolean variable. A good introduction to this reduction
algorithm can be found in [21].

III. FORMULATING THE EQUIVALENCE CRITERION

In this section we show how to obtain an equivalence
criterion for a pipelined circuit that serves as the formal
specification for the pipeline controller. We use a simple
example to illustrate the necessary steps. Performing this
procedure automatically, when given a graphical or net-list
representation of the model(s) is trivial.

Registers REG

ALURead

Write

source

dest

(a) Non-pipelined version

Registers REG

ALU

control

v

w

Read

Write

source

dest

(b) Pipelined version

Figure 1. A simple example of a microprocessor-like circuit, in non-
pipelined and pipelined version.

Example 1. In Fig. 1, we present a sketch of a simple
microprocessor-like circuit, to which all the examples in this
paper refer. Let us first examine the non-pipelined version in
Fig. 1(a). The circuit has two inputs s and d, representing a
source and a destination address, respectively. The design
contains an array of registers (register file) REG. Data
words can be read from and written to the register file, using
an address to index one specific register. This is symbolized
by the Read and Write blocks in Fig. 1(a). The output of the
Read block is the current value of the register with address
s. The Write block updates the register file so that in the next
time step the register with address d will contain the value
present at the Write block’s input. The ALU block represents
an arbitrary combinational function on data words.

This circuit is similar to a microprocessor (although
heavily simplified), which also reads operands from memory,
processes them, and writes the result(s) back to memory.
Despite its simplicity, this circuit will suffice to demonstrate
the concepts of our approach.

Fig. 1(b) shows a pipelined version of the circuit in
Fig. 1(a), with one stage of pipeline registers v and w. In
this circuit, the value read from the register file is stored to
pipeline register v in the first step. The destination address
belonging to this value is stored alongside in pipeline
register w. In a second time step, the function ALU is
applied to the value of v and written back to the register
with address w.

Suppose that the first part of the pipeline wants to read
a value from the address to which the second part has to
write to in the same time step. In this case, the register file
REG still contains an old value. To address this problem, we
add a multiplexer that provides the choice of either reading
from the register file, or reading a forwarded value from the
second part of the circuit. The choice is made by a (Boolean)

Pipelined Architecture

Non-Pipelined Architecture

flush flush

step

instruction

(a)

(b)

Figure 2. How to show equivalence between pipelined and non-pipelined
version, according to the Burch-Dill paradigm [9].

control signal c.
Assume that when c is true the forwarded data is read,

and when c is false data from the register file is read. It
is easy to see that in this simple example c ⇔ (s = w) is
a valid implementation of the controller. Setting c to true
whenever s = w will ensure that (after a final flush of the
pipeline) the pipelined version of the circuit will leave the
register file in exactly the same state as the non-pipelined
version would have, when given the same sequence of inputs.

Informally speaking, the specification of a pipeline con-
troller is that it should ensure that the pipelined circuit’s be-
havior is (functionally) equivalent to that of a non-pipelined
reference implementation. In this section we will show how
to formalize this informal criterion. We will follow the
Burch-Dill approach [9], which we will briefly recapitulate.

Fig. 2 illustrates what is meant by equivalence between
a pipelined and a non-pipelined version of a processor.
Suppose we start with an empty pipeline in the initial state
and apply a sequence of inputs, resulting in a sequence
of states of the circuit (cf. Fig. 2(b), lower line). After
that, we perform a flush of the pipeline (we will detail
how this works below) to obtain a final state. The flush
is indicated by the rightmost upwards arrow in Fig. 2(b). If
we apply the same sequence of inputs to the non-pipelined
implementation (starting from the same initial state of the
register file, of course), we want to obtain a sequence of
states which ends in the same final state that we had before
(cf. Fig. 2(b), upper line).

To show that it does not matter whether we perform
the sequence of instructions on the pipelined or the non-
pipelined circuit, and that in both cases we reach the same
final state in the upper right corner of Fig. 2(b) (as illustrated
by the dashed red line), it suffices to show that flushing the
pipeline and performing one step are commutative opera-
tions (cf. Fig. 2(a)), for arbitrary steps and states of the
pipeline. If commutativity holds in this general case, then,
by repeated application of commutativity, we can conclude

that equivalence also holds for the entire sequence of inputs.
We will thus derive our equivalence criterion from the
commutativity outlined by Fig. 2(a).

The basic structure of the equivalence criterion consists of
three parts. We assume an (arbitrary) initial state (Fig. 2(a),
lower left corner). The first part of the equivalence criterion
is a formula, describing the behavior of the circuit from
this initial state along the “flush-instruction” path (upwards
arrow, then rightwards arrow). Analogously, the second part
describes the behavior along the “step-flush” (rightwards
arrow, then upwards arrow). The third part asserts that the
two final states resulting from the two other parts are in fact
identical.

We will now show how to obtain these three parts. First,
we need to discuss how to model the different parts of a
circuit in a formula. To model address-based memory (e.g.
register files), we use arrays with uninterpreted indices. One
advantage of this approach is that the actual size of the
memory (number of addresses) and its width (bits per word)
do not matter. Our considerations and computations will be
valid for any concrete values for size and width. Inputs
and storage elements for single data words (e.g. pipeline
registers) are modeled by simple variables ranging over
an uninterpreted (infinite or sufficiently large1) domain D.
As an example for such a domain, consider the set Bn,
corresponding to n-bit data words of a processor. Again,
our approach is independent of the concrete choice for D.
Combinational datapath elements, such as the function ALU
in our example, are modeled by uninterpreted functions with
appropriate arity. We use primes to denote time steps. I.e.,
v′ is the value of v after one time step, v′′ is the value after
two time steps, etc.

To obtain the first part of the equivalence criterion, we
have to model the flushing of the pipeline from an arbitrary
current state. We use an approach resembling the completion
functions presented by Hosabettu et al. [17]. Instead of
actually flushing the pipeline, which would require a se-
quence of special inputs, we model the effect that completing
an unfinished pipeline stage would have on the observable
parts of the circuit. After completing one pipeline stage, we
consider this stage removed from the circuit and continue
completing remaining stages, if any.

Example 2. For the circuit in Fig. 1(b), completion is
achieved by updating REG[w] to the value ALU(v). In our
example, there are no more stages to complete, thus flushing
this circuit is modeled by the following equation, where the
“ci” subscript symbolizes that we are in the “complete, then
instruction” path of the equivalence diagram (Fig. 2(a)).

REG′
ci = REG{w ← ALU(v)} (1)

After completing the pipeline, we model one step in
the non-pipelined version of the circuit (corresponding to

1We will discuss the precise meaning of sufficiently large in Section V.

the upper rightwards arrow in Fig. 2(a)). Thus, we obtain
the first part of our equivalence criterion, which we call
ϕci, by forming the conjunction of the equations obtained
from modeling completion and one instruction of the non-
pipelined circuit.

Example 3. One step of the non-pipelined circuit is modeled
by the following equation:

REG′′
ci = REG′

ci{d← ALU(REG′
ci[s])} (2)

The conjunction of Equations 1 and 2 forms ϕci.

The second part of the equivalence criterion, ϕsc, is
obtained by modeling the “step, then complete” part of the
equivalence diagram. This is done similarly to the ”ci” part.
Since ϕci and ϕsc describe how the elements of the circuit
are updated during execution, we define ϕupd := ϕci ∧ϕsc.

Example 4. During one step, the value of register v is fed
to the function ALU , the result of which is then written to
address w of the register file. Also, the pipeline registers v
and w are updated during the step operation. The new value
of w is copied from input d. The new value of v depends
on the value of control signal c. Overall, we obtain the
following equation (corresponding to the lower rightwards
arrow in Fig. 2(a)).

REG′
sc = REG{w ← ALU(v)} ∧ (w′ = d) ∧(

(c ∧ v′ = ALU(v)) ∨ (¬c ∧ v′ = REG[s])
)

(3)

Flushing the pipeline after this step works analogously to the
complete-instruction path. We obtain the following equation:

REG′′
sc = REG′

sc{w′ ← v′} (4)

We form the conjunction of Equations 3 and 4 to obtain ϕsc.

The third part of the equivalence criterion, ϕequiv is
supposed to ensure that the states obtained by the update
rules of ϕci and ϕsc are identical.

Example 5. In our example, the observable state of the
circuit are the values of the register file. Thus, we obtain

ϕequiv := (REG′′
ci = REG′′

sc) (5)

The steps so far have more or less followed the standard
Burch-Dill approach for verification of pipelined circuits.
From here on, we will present our extension of this approach
to synthesis. What we want to state is that for any arbitrary
initial state, and for any arbitrary inputs, as well as for any
arbitrary interpretation of the functions in the circuit, it is
possible to set values for the control signals, such that the
final states of the ci- and the sc-path are always identical,
as long as the update rules are followed.

Example 6. For the circuit in Fig. 1, the equivalence
criterion is given by the following equation:

∀REG .∀ALU .∀ v, w, s, d . ∃ c .∀REG′
ci, REG

′′
ci,

REG′
sc, REG

′′
sc .∀ v′, w′ .

(
ϕupd → ϕequiv

)
(6)

There are some noteworthy facts about Equation 6. First
of all, it is a closed formula; all variables are bound by
a quantifier. Second, the existential quantification is over
Boolean control signals only. Only the universal quantifica-
tion is over elements of a (possibly) infinite domain. Third,
due to the quantifier structure, we observe that the control
values may depend on the initial state (register file and
pipeline registers), inputs, and the concrete interpretation of
the functions. However, control values are independent of
any “future state” of the circuit. Furthermore, we note that,
since there is also quantification over array variables and
function symbols, Equation 6 is a second-order formula.
However, this will not hinder us to develop a decision
procedure for this kind of formulas, due to the special
quantifier structure.

We are interested in deciding the validity of equivalence
criteria such as Eq. 6. In case such an equivalence criterion
is not valid, it is not possible to find control values that
ensure correctness for all possible states/inputs; the control
problem is unrealizable. A possible reason for unrealizability
is that the datapath does not feature enough options to ensure
correct behavior. As a consequence, the number and position
of control signals must be known a priori.

Example 7. If we remove the multiplexer for data forward-
ing from the pipelined circuit in Fig. 1(b), or if we connect
its inputs to wrong wires (e.g. to the output of the w register
instead of the output of the ALU function), the control
problem becomes unrealizable.

In situations like the one in Example 7, it is easy to obtain
a counterexample; i.e., a sequence of inputs for which it is
impossible to find control values so that the specification is
fulfilled. Such a sequence is helpful to find out what needs
to be added to the datapath in order to make the synthesis
problem realizable.

In addition to the realizability question, we want to extract
from equations like Eq. 6 functions for the control signals, in
terms of the inputs, current state, and function interpretation.

IV. EQUIVALENCE CRITERIA AND DECIDABILITY

In the previous section we have shown, using a simple
example, how one can obtain an equivalence criterion which
can be viewed as a formal specification for a controller to
be synthesized. We will now formally define the class of
equivalence criteria that can be handled by our approach,
and the fragment of first-order logic on which they are based.
Subsequently we will show that they are decidable.

Definition 1. LD
AUE is the subset of first-order formulas

based on the theories of arrays, uninterpreted functions, and

equality, which adheres to the following BNF-style grammar.

formula → array property | term = term |
array term = array term |
propositional_var |
<Bool. combin. of formula>

array term → array_var |
array_var{term← term}

term → domain_var | domain_const |
function_symbol(term∗) |
array_var[term]

array property → ∀ī . iguard ī → valconstr ī
iguard ī → iguard ī ∧ iguard ī |

iguard ī ∨ iguard ī | atom ī

atom ī → true | var ī = var ī |
evar ī 6= var ī | var ī 6= evar ī

var ī → evar ī | uvar ī
uvar ī → <any i ∈ ī>
evar ī → domain_var <except any i ∈ ī> |

domain_const |
function_symbol(evar ī∗)

valconstr ī → array_var = array_var |
array_var[var ī] = evar ī |
<Bool. combin. of valconstr ī>

The symbols domain_var represent variables ranging
over D, and domain_const are constants chosen from
D. The symbols array_var are array variables, as ax-
iomatized by the theory of (extensional) arrays, and the
function_symbols represent uninterpreted functions.

Definition 2 (Equivalence Criterion). Let R̄ and R̄′ be
finite sets of array variables R1, . . . , Ri and R′

1, . . . , R
′
j

respectively, let f̄ be a finite set of function symbols
f1, . . . , fk, let s̄ and s̄′ be finite sets of variables s1, . . . , sl
and s′1, . . . , s

′
m ranging over D respectively, and let c̄ be

a finite set c1, . . . , cn of propositional variables. Let ∀R̄
be a shorthand notation for ∀R1 .∀R2∀Ri, let ∃c̄ be
shorthand for ∃c1 .∃c2∃cm, and let ∀R̄′, ∀s̄, and ∀s̄′
be analogous shorthand notations.

Let ϕAUE be a formula from LD
AUE . Let varsA(ϕAUE)

be the set of all array variables in ϕAUE . Similarly, let
varsF (ϕAUE), varsD(ϕAUE), and varsP (ϕAUE) be the
sets of all function symbols, domain variables, and proposi-
tional variables in ϕAUE , respectively. If varsA(ϕAUE) =
R̄ ∪ R̄′, varsF (ϕAUE) = f̄ , varsD(ϕAUE) = s̄ ∪ s̄′, and
varsP (ϕAUE) = c̄, then the (closed) formula

∀R̄ . ∀f̄ . ∀s̄ .∃c̄ .∀R̄′ .∀s̄′ . ϕAUE

is an equivalence criterion.

For the remainder of this paper, we will use capital letter
R for array variables, letter f for function symbols, letters
d, i, s, v, w, x, y, z for domain variables, and letters c, e for
propositional variables.

Theorem 1. The validity of an equivalence criterion (as
defined in Definition 2) is decidable.

Proof: The existential quantification in an equivalence
criterion is, per definition, over Boolean variables only.
Thus, we can rewrite the existential quantification as 2n

disjunctions, for n Boolean variables c1, . . . , cn in c̄.

∀R̄ . ∀f̄ . ∀s̄ .∃c̄ .∀R̄′ .∀s̄′ .ϕAUE

m

∀R̄ . ∀f̄ . ∀s̄ .
(
∀R̄′ .∀s̄′ .ϕAUE |c̄=00...00 ∨

∀R̄′ .∀s̄′ .ϕAUE |c̄=00...01 ∨ . . .∨

∀R̄′ .∀s̄′ .ϕAUE |c̄=11...11

)

where ϕAUE |c̄=... stands for ϕAUE in which the variables
c̄ have been replaced by true or false, as indicated by
the given bit string. We rename all variables in R̄′ and s̄′

so that variables do not occur outside the scope of their
corresponding quantifier. Thus, we can switch the order of
quantification and disjunction. We obtain

∀R̄ . ∀f̄ . ∀s̄ .∀R̂′ .∀ŝ′ .
(
ϕAUE |c̄=00...00 ∨

ϕAUE |c̄=00...01 ∨ . . .∨

ϕAUE |c̄=11...11

)
(7)

Clearly, Equation 7 is valid if and only if

¬ϕAUE |c̄=00...00 ∧ . . . ∧ ¬ϕAUE |c̄=11...11 (8)

is unsatisfiable.
Note that Equation 8 is in LD

AUE , for which satisfiability
is decidable [21].

V. REDUCTION STEPS

In order to be able to extract functions for control values,
we perform three validity-preserving reduction steps on
the equivalence criterion, in order to obtain an equivalent
propositional formula. The first reduction [7] will remove
arrays and reduce the equivalence criterion to a formula
with uninterpreted functions and equalities only. Second,
we use Ackermann’s reduction [1] to remove uninterpreted
functions and reduce the formula to one with equalities only.
Third, we further reduce it to propositional logic, using the
method presented in [8]. Finally, we show how to extract
functions for control values from the reduced formula, using

a cofactor approach. In the subsequent sections, we will
present these steps in more detail, and provide a formal proof
that each of the reduction steps is validity preserving.

A. Structure of Proofs

The proofs for each of the reduction steps all share
the same basic structure. In each case, we want to prove
equivalence between two quantified formulas, with the same
quantifier structure: Non-Boolean universal quantification,
followed by Boolean existential quantification, followed
again by non-Boolean universal quantification. Let the two
formulas be ∀ā .∃b̄ .∀c̄ . ϕ and ∀x̄ .∃ȳ .∀z̄ . ψ. The proof that
validity of the first formula implies validity of the second
proceeds as sketched by the following equation.

∀ā . ∃b̄ . ∀c̄ . ϕ

α

x β

y γ

x
∀x̄ . ∃ȳ . ∀z̄ . ψ (9)

We start with an arbitrary interpretation x̄ for x̄ in ψ. Next,
we map these values to corresponding values ā for ā in
ϕ, according to a mapping α : x̄ 7→ ā. We then use
the assumption of the validity of the first formula to find
values b̄ for b̄ such that for any arbitrary interpretation c̄
for c̄ we have {ā, b̄, c̄} |= ϕ. We use another mapping
β : b̄ 7→ ȳ to find values ȳ. Now we still need to prove that
∀z̄ . ψ[x̄/x̄, ȳ/ȳ] is valid. To do so, we arbitrarily choose an
interpretation z̄ for z̄ and use a mapping γ : z̄ 7→ c̄ to find
corresponding values c̄. From the assumption of validity of
the first formula we know that {ā, b̄, c̄} |= ϕ. What remains
to be shown is that this implies {x̄, ȳ, z̄} |= ψ. This last
step, as well as the mappings α and γ will be different
for each of the proofs. The mapping β will always be the
identity mapping, because in our case b̄ and ȳ are the same
set of Boolean control variables. This also means that the
control functions which we will eventually compute from
the propositional formula will be valid implementations for
the original equivalence criterion. Within each proof, we will
only present the mappings α and γ, and we will show that
ϕ[ā/ā, b̄/b̄, c̄/c̄] implies ψ[x̄/x̄, ȳ/ȳ, z̄/z̄].

Some of the proofs will require that the domain D from
which the interpretations for first-order variables are chosen
is large enough so that all variables in a formula can be
assigned pairwise different values. Henceforth, when we
speak of a sufficiently large domain (with respect to a
formula ϕ), we will mean that |D| ≥ #var(ϕ), where
#var(ϕ) is the number of first-order variables and constants
in ϕ. Note that in particular any infinite domain is obviously
sufficiently large with respect to any formula.

B. Reduction to Uninterpreted Functions and Equality

We start with an equivalence criterion, as defined by
Definition 2. For the reduction to uninterpreted functions

and equality we proceed as in [7]. We take the part ϕAUE

(i.e., the part without the quantifier prefix) of the equivalence
criterion and apply several transformations to it. First, all
array writes are removed by introducing new variables and
applying the write axiom.

Example 8. Consider the term REG{w ← ALU(v)} from
Example 2. A new variable REG′ is introduced, the term is
replaced by REG′, and the conjunct

REG′[w] = ALU(v) ∧ ∀i . i 6= w → REG′[i] = REG[i]

is added.

Lemma 1. Let ϕ be an equivalence criterion. Let ϕ′ be the
equivalence criterion obtained by removing all array write
expressions according to the write axiom, as outlined above.
Then ϕ is valid if and only if ϕ′ is valid.

For the remainder of this paper, we will only consider
equivalence criteria without array-write expressions. For
equivalence criteria with array-write expressions we apply
Lemma 1 to obtain one without.

Next, we find the index set I, as outlined in Section II-B.
Then, we replace all array reads by uninterpreted function
instances. Similar to the short-hand notation introduced in
Definition 2, we will write f̄R and f̄R′ for the function
symbols corresponding to the array variables in R̄ and R̄′

respectively. Finally, all universal quantifications over array
indices are replaced by finite conjunctions over the index set
I.

Definition 3. Let ϕAUE be a formula from LD
AUE .

no array(ϕAUE) is the first-order formula over the theories
of uninterpreted functions and equality obtained from ϕAUE

after applying the aforementioned transformations.

Example 9. Consider the equivalence criterion from Exam-
ple 6. The index set for this example is I = {s, d, w, λ}. We
now replace all universal quantifications with conjunctions
over the index set. E.g., the term ∀i . i 6= w → REG′[i] =
REG[i] from Example 8 is replaced by∧

i∈I
i 6= w → REG′[i] = REG[i]. (10)

Next, array reads are replaced by function calls. E.g.,
REG′

ci[w] becomes REG′
ci(w). Note that for simplicity

and readability we name these functions exactly the same
as the corresponding arrays. The distinction is made by
using square brackets [·] with arrays, and parenthesis (·)
with functions.

Furthermore, we construct ϕλ, which we will call the λ-
constraints, in the following way:

ϕλ :=
∧

i∈I\{λ}

i 6= λ (11)

Theorem 2 (Reduction to Uninterpreted Functions and
Equality). For a sufficiently large domain, the equivalence
criterion

∀R̄ . ∀f̄ . ∀s̄ .∃c̄ .∀R̄′ .∀s̄′ . ϕAUE

is valid if and only if the formula

∀f̄ . ∀f̄R .∀s̄ .∃c̄ .∀f̄R′ .∀s̄′ .∀λ .(ϕλ → no array(ϕAUE))
(12)

is valid.

Proof: “⇒”: We assume validity of the equivalence
criterion, and proof validity of Equation 12. Let f̄, f̄R, f̄R′ , s̄,
s̄′, and Λ be arbitrary interpretations for f̄ , f̄R, f̄R′ , s̄, s̄′, and
λ in Equation 12 respectively. Let α be a mapping from an
interpretation of function symbols in f̄R to an interpretation
of array variables in R̄ as follows. For all fR ∈ f̄R let α(fR)
be an interpretation R for an array variable in R̄ such that
∀i . fR(i) = R[i]. Let γ be a mapping from f̄R′ to R̄′, defined
analogously to α. Let R = α(fR) for each R ∈ R̄ and
R′ = γ(fR′) for each R′ ∈ R̄′. Let c̄ be an interpretation
for c̄ such that ∀R̄′ .∀s̄′ . ϕAUE [R̄/R̄, f̄/f̄ , s̄/s̄, c̄/c̄].

We have to show that {R̄, f̄, s̄, c̄, R̄′, s̄′} |= ϕAUE implies
that {f̄R, f̄, s̄, c̄, f̄R′ , s̄′,Λ} |= (ϕλ → no array(ϕAUE)). It
is easy to see that this is the case. ϕAUE features uni-
versal quantification over indices, where no array(ϕAUE)
only features finite conjunctions. Any model that satisfies
a universal quantification surely also satisfies a finite con-
junction over the same variable. Note that since the right-
hand side of the implication (ϕλ → no array(ϕAUE)) is
satisfied by {f̄R, f̄, s̄, c̄, f̄R′ , s̄′,Λ}, it is irrelevant whether or
not {f̄R, f̄, s̄, c̄, f̄R′ , s̄′,Λ} |= ϕλ. This concludes the proof in
“⇒” direction.

“⇐”: Let R̄, f̄, s̄, R̄′, and s̄′ be arbitrary interpretations for
R̄, f̄ , s̄, R̄′, and s̄′ in the equivalence criterion. Let α and γ
be mappings inverse to those of the “⇒” case. For each fR ∈
f̄R and each fR′ ∈ f̄R′ let fR = α(R) and fR′ = γ(R′). Let
c̄ be an interpretation for c̄ such that ∀f̄R′ .∀s̄′ .∀λ .(ϕλ →
no array(ϕAUE)[̄fR/f̄R, f̄/f̄ , s̄/s̄, c̄/c̄].

For a sufficiently large domain it is always possible to
choose Λ in such a way that M = {f̄, f̄R, s̄, c̄, f̄R′ , s̄′,Λ} |=
ϕλ. The assumption of validity of Eq. 12 implies that in this
caseM |= no array(ϕAUE). Bradley et al. [7] have proven
that any model M that satisfies ϕλ and no array(ϕAUE)
also satisfies ϕAUE (when applying the proper mapping
between function symbols and array variables).

C. Reduction to Equality

We use Ackermann’s reduction [1] to reduce the formula
ϕUE over the theories of uninterpreted functions and equal-
ity, which we obtained in the previous reduction step, to
pure equality logic [21]. To ease presentation, we will only
consider unary functions. Note that the extension of Acker-
mann’s reduction to n-ary functions is straightforward [21].

Ackermann’s reduction replaces each instance f(x) of
function symbol f with parameter x with a new domain vari-
able dxf . Then, functional constraints ϕFC are constructed
in the following way:

ϕFC :=
∧
f∈f̄

∧
x,y∈args(f)

(
x = y → dxf = dyf

)
(13)

where f̄ is the set of function symbols occurring in ϕUE ,
and args(f) are all the terms to which f is applied in ϕUE .

Example 10. Consider Equation 10 in Example 9. After re-
placing the array reads with function calls, this equation has
the following function instances: REG(s), REG(w),
For these instances new domain variables dsREG, d

w
REG, . . .

are introduced. One of the conjuncts of ϕFC is then

(s = w)→
(
dsREG = dwREG

)
.

Definition 4. no func(ϕUE) is the first-order formula over
the theory of equality obtained from ϕUE by replacing all
function instances with fresh domain variables, as outlined
above.

Theorem 3 (Reduction to Equality Logic). Let ϕUE be
a quantifier-free formula over the theories of uninterpreted
functions and equality. Then the formula

∀f̄ . ∀s̄ .∃c̄ .∀f̄ ′ .∀s̄′ . ϕUE (14)

is valid if and only if the formula

∀d̄xf .∀s̄ .∃c̄ .∀d̄xf ′ .∀s̄′ .(ϕFC → no func(ϕUE)) (15)

is valid.2

Proof: “⇒”: We assume validity of Equation 14 and
prove validity of Equation 15. Let d̄xf , d̄xf′ , s̄, and s̄′ be
arbitrary interpretations for d̄xf , d̄xf ′ , s̄, and s̄′, in Equation
15 respectively. Let D = d̄xf ∪ d̄xf′ ∪ s̄ ∪ s̄′. Let α be a
mapping from an interpretation D for domain variables to
an interpretation f̄ for function symbols in f̄ , such that for
f̄ = α(D) each f ∈ f̄ satisfies ∀x ∈ D .∀f ∈ f̄ . f(x) = dxf .
In case such interpretations f̄ do not exist due to functional
inconsistencies, α returns an arbitrary interpretation f̄. Let
γ be a mapping from D to an interpretation f̄ ′ for function
symbols in f̄ ′, defined analogously to α. Let f̄ = α(D)
and f̄ ′ = γ(D). Let c̄ be an interpretation for c̄ such that
∀f̄ ′ .∀s̄′ . ϕUE [̄f/f̄ , s̄/s̄, c̄/c̄].

We have to show that {f̄, s̄, c̄, f̄ ′, s̄′} |= ϕUE implies that
{d̄xf , s̄, c̄, d̄xf′ , s̄′} |= (ϕFC → no func(ϕUE)).

Models that do not satisfy ϕFC trivially satisfy (ϕFC →
no func(ϕUE)). We only need to consider models that
do satisfy ϕFC . Thus, for any function instance f(x) in

2To increase readability and ease notation, we have subsumed all terms
of the same “type” that appear under the same quantifier. I.e., instead of
writing ∀f̄ , f̄R, we simply write ∀f̄ .

Equation 14, we have f(x) = dxf , where dxf is the inter-
pretation for the variable dxf with which f(x) has been
replaced according to the definition of no func(ϕUE).
Thus, we conclude that if {f̄, s̄, c̄, f̄ ′, s̄′} |= ϕUE , we have
{d̄xf , s̄, c̄, d̄xf′ , s̄′} |= no func(ϕUE). This concludes the
proof in “⇒” direction.

“⇐”: Let f̄, s̄, f̄ ′, and s̄′ be arbitrary interpretations for f̄ ,
s̄, f̄ ′, and s̄′ in Equation 14. Let α be a mapping from an
interpretation for function symbols to an interpretation for
domain variables such that d̄xf = α(f) satisfies dxf = f(x) for
all dxf ∈ d̄xf . Let γ be a mapping analogous to α. Let d̄xf =
α(f) and d̄xf′ = γ(f ′). Let c̄ be an interpretation for c̄ such
that ∀d̄xf ′ .∀s̄′ .(ϕFC → no func(ϕUE))[d̄xf /d̄

x
f , s̄/s̄, c̄/c̄].

Due to the definition of α and γ, we know that
{d̄xf , s̄, c̄, d̄xf′ , s̄′} |= ϕFC . Due to the assumption of validity
of Equation 15, we therefore know that {d̄xf , s̄, c̄, d̄xf′ , s̄′} |=
no func(ϕUE).

We have to show that {d̄xf , s̄, c̄, d̄xf′ , s̄′} |= no func(ϕUE)
implies {f̄, s̄, c̄, f̄ ′, s̄′} |= ϕUE . This follows trivially from
the definitions of no func(ϕUE), α, and γ.

D. Reduction to Propositional Logic
The reduction to propositional logic is based on the

method presented by Bryant and Velev [8]. It proceeds as
follows. First, a non-polar equality graph G for the formula
in question is constructed. This graph has a node for every
first-order variable, and an edge for every equality atom
between such variables present in the formula. The polarity
of the equality atom, whether it is e.g. v = w or v 6= w,
is disregarded. The graph will be used to create transitivity
constraints ϕTC . First, it is made chordal. I.e., edges are
added to the graph so that it does not contain any chord-
free cycles with length greater than 3. Next, each edge in the
resulting graph is labeled with a fresh propositional variable,
corresponding to the two nodes which are connected by the
edge. I.e., an edge between nodes v an w will be labeled
with propositional variable ev,w. We assume a predefined
order on domain variables, in order to avoid introducing
duplicate variables ev,w, ew.v . The transitivity constraints are
then constructed as follows, where 4(G) is the set of all
triangles in G.

ϕTC :=
∧

(x,y,z)∈4(G)

(
(ex,y ∧ ey,z → ex,z) ∧

(ex,y ∧ ex,z → ey,z) ∧

(ey,z ∧ ex,z → ex,y)
)

(16)

Bryant and Velev [8] prove that for a chordal graph it suffices
to consider the transitivity constraints over triangles only.

Definition 5. The propositional skeleton skel(ϕE) of an
equality logic formula ϕE is the propositional formula
obtained by replacing each equality atom of the form v = w
in ϕE with a corresponding (fresh) propositional variable
ev,w.

Theorem 4 (Reduction to Propositional Logic). For a
sufficiently large domain, the formula

∀s̄ .∃c̄ .∀s̄′ . ϕE (17)

is valid if and only if the formula

∀ēs,s .∃c̄ .∀ēs,s′ .∀ēs′,s′ .
(
ϕTC → skel(ϕE)

)
(18)

is valid, where ēs,s, ēs,s′ , and ēs′,s′ are sets of propositional
variables, corresponding to equalities between first-order
variables from the sets s̄ and s̄, s̄ and s̄′, and s̄′ and s̄′,
respectively.

Proof: “⇒”: Let ēs,s, ēs,s′ , and ēs′,s′ be arbitrary
interpretations for ēs,s, ēs,s′ , and ēs′,s′ in Equation 18
respectively. Let E = ēs,s ∪ ēs,s′ ∪ ēs′,s′ . Let α be a mapping
from an interpretation E to an interpretation for domain
variables in s̄ as follows. Let s̄ = α(E) such that for all
s1, s2 ∈ s̄ we have that s1 = s2 if and only if es1,s2 = true.
In case such interpretations s̄ do not exist due to transitivity
violations, α returns arbitrary interpretations. Let γ be a
mapping from E to an interpretation for domain variables in
s̄′ defined analogously to α. Let s̄ = α(E) and s̄′ = γ(E).
Let c̄ be an interpretation for c̄ such that ∀s̄′ . ϕE [̄s/s̄, c̄/c̄].

We have to show that {s̄, c̄, s̄′} |= ϕE implies that
{ēs,s, c̄, ēs,s′ , ēs′,s′} |= (ϕTC → skel(ϕE)).

Models that do not satisfy ϕTC trivially satisfy (ϕTC →
skel(ϕE)). We only need to consider models that do satisfy
ϕTC . Thus, for any equality atom s1 = s2 in Equation 17,
we have (s1 = s2) ⇔ es1,s2 . Due to the definition of
skel(ϕE), we conclude that if {s̄, c̄, s̄′} |= ϕE , we have
{ēs,s, c̄, ēs,s′ , ēs′,s′} |= (ϕTC → skel(ϕE)). This concludes
the proof in “⇒” direction.

“⇐”: Let s̄, and s̄′ be arbitrary interpretations for s̄
and s̄′ in Equation 17. Let α be a mapping from an
interpretation for domain variables in s̄ to an interpreta-
tion for propositional variables ēs,s such that ēs,s = α(̄s)
satisfies es1,s2 ⇔ (s1 = s2) for each es1,s2 ∈ ēs,s. Let γ
be a mapping from an interpretation for domain variables
in s̄ ∪ s̄′ to an interpretation for propositional variables
ēs,s′ and ēs′,s′ , analogous to α. Let ēs,s = α(̄s) and
(ēs,s′ , ēs′,s′) = γ(s̄ ∪ s̄′). Let c̄ be an interpretation for c̄
such that ∀ēs,s′ .∀ēs′,s′ .(ϕTC → skel(ϕE))[ēs,s/ēs,s, c̄/c̄].

Due to the definition of α and γ, we know that
{ēs,s, c̄, ēs,s′ , ēs′,s′} |= ϕTC . Due to the assumption
of validity of Equation 18, we therefore know that
{ēs,s, c̄, ēs,s′ , ēs′,s′} |= skel(ϕUE).

We have to show that {ēs,s, c̄, ēs,s′ , ēs′,s′} |= (ϕTC →
skel(ϕE)) implies that {s̄, c̄, s̄′} |= ϕE . This follows triv-
ially from the definitions of skel(ϕE), α, and γ.

VI. EXTRACTING CONTROL FUNCTIONS

In the previous sections we have shown how to transform
an equivalence criterion into an equivalent propositional for-
mula ∀ēs,s .∃c̄ .∀ēs,s′ .∀ēs′,s′ . ϕprop. Now we want to com-

pute functions (in terms of the variables in ēs,s) for the con-
trol signals in c̄. This can be done by a QBF solver, capable
of computing certificates, e.g. sKizzo [3]. Another possibility
is to use Binary Decision Diagrams (BDDs). We compute a
BDD for ϕprop, and subsequently perform the inner univer-
sal quantifications to obtain ϕ̃prop := ∀ēs,s′ .∀ēs′,s′ . ϕprop.
Although in the worst case this might blow up the size of
the BDD exponentially (w.r.t. |ēs,s′ | + |ēs′,s′ |), the average
case may be much more space-efficient.

The formula ϕ̃prop can be viewed as the characteristic
function of a multi-output Boolean relation, with inputs ēs,s
and outputs c̄. An algorithm of how to compute functions
compatible with a given relation has been presented in
[37]. (See also [5], [18].) It proceeds as follows. For every
output ci we first perform the existential quantification of
all other outputs. From the remaining formula, we compute
the positive and the negative cofactor of ci, to which we
will refer by ϕci and ϕ¬ci , respectively. These can be used
to determine the on-set, off-set, and don’t-care-set of the
function for ci in the following way:

ON = ϕci ∧ ¬ϕ¬ci (19)
OFF = ¬ϕci ∧ ϕ¬ci (20)
DC = ϕci ∧ ϕ¬ci (21)

Any minimization algorithm for incompletely specified
Boolean functions can be used to compute an actual im-
plementation fci for ci, using the sets ON , OFF , and DC.
Once this is done, we resubstitute fci for ci in ϕ̃prop. This
is necessary, because values of other outputs might depend
on the actual choice of ci. After that, we can proceed with
computing a function for the next output.

The control functions can easily be integrated into the
original circuit. For each variable es1,s2 we build a compara-
tor for the terms s1, s2 in the circuit. The outputs of all such
comparators are then used as inputs for the control functions
fci . I.e., the control signals ci are Boolean combinations of
the comparator outputs.

Example 11. For the circuit in Fig. 1(b), one possible
solution is c⇔ (s = w). Thus, we insert a comparator into
the circuit, whose inputs are connected to the primary input
s and the pipeline register w. The output of the comparator
is then the desired control signal c.

An alternative to the aforementioned cofactor-based ap-
proach is to employ the relation determinization technique
based on propositional interpolation which has been de-
scribed by Jiang et al. [18].

VII. RESULTS

A. Complexity Discussion

We briefly discuss the computational complexity of the
reduction steps. Let n be the size of the original equiv-
alence criterion. Consider the reduction to uninterpreted

functions and equality (Section V-B). Clearly, the size of
the λ-constraints is bound by O(n). Moreover, universal
quantifications are replaced by O(n) conjuncts. Thus, the
total size of the reduced formula is O(n2). The reduction to
pure equality logic (Section V-C) causes another polynomial
increase in size, whose details depend on the number of
different functions, the number of function instances, and the
arity of the functions. Ackermann’s reduction also introduces
a linear number of new variables (one per function instance).
The reduction to propositional logic (Section V-D) causes at
most a cubic increase in the number of variables and the
formula’s size [8]. Concerning computation time, all steps
so far can be done in polynomial time.

Computing the quantifications is (in the worst case) expo-
nential in the number of variables, concerning computation
time and resulting formula size. However, this step does
not introduce any new variables. The last step, computing
the control functions, is worst-case exponential (due to the
quantifications).

B. Proof-of-Concept

We have done a proof-of-concept implementation of our
method, based on the example presented in Section III.
Using a Python script and the CUDD library [34], we
created a BDD for the equivalence criterion (reduced to
propositional logic). Using the cofactor approach described
in Section VI, we computed the interval for the solution.
Both interval boundaries were non-trivial, i.e., neither was
the lower bound equal to false, nor was the upper bound
equal to true. We also checked that the expected solution
c⇔ (s = w) is contained in the interval.

We note, however, that BDDs seem to be a suboptimal
data structure for this kind of problem. The BDD for
transitivity constraints can become exponentially large [8],
irrespective of the variable ordering. In our experiments most
of the computation time was indeed spent on computing
a BDD for the transitivity constraints. Without dynamic
reordering, the program quickly runs out of memory; with
dynamic reordering enabled, most of the computation time
is spent for reordering. In our first experiment, with dy-
namic reordering enabled, it took approximately 14 hours to
compute the BDD for ϕ̃prop. We stored the variable order
that had resulted from dynamic reordering at this point and
used it as a fixed order for subsequent experiments, thereby
reducing the computation time to roughly 10 minutes. It
should also be mentioned that this rather simple example
resulted in 151 Boolean variables, after the reduction steps.

We have also done a validity analysis of the equivalence
criterion of our example using the z3 SMT solver [13].
We modeled the equivalence criterion (without the quantifier
prefix) in SMT-LIBv2 [2] format, transformed the validity
problem into a satisfiability problem, as outlined in Sec-
tion IV, and checked it with z3. We also checked whether
the expected solution would be a valid solution by asserting

that c⇔ (s = w), negating the whole formula and checking
for satisfiability (expecting “unsatisfiable” as result). All the
checks we performed with z3 terminated within negligible
time and all produced the expected results.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a novel method for correct-by-
construction controller synthesis, as well as a proof of
its correctness. Complex (datapath) elements are efficiently
abstracted by the use of uninterpreted functions. Thus, our
method is able to tackle problems that would be prohibitively
large, when modeled directly on the Boolean level. To the
best of our knowledge this is the first time that uninterpreted
functions have been used as the means for abstraction in
synthesis. The primary target of our approach is control logic
for pipelined circuits, however the method is applicable to all
controller synthesis problems, where a suitable correctness
criterion can be stated within the class of formulas that we
have described. Concerning pipelines, our method covers
safety that can be expressed by a Burch-Dill-style [9]
verification condition. Extensions to liveness (e.g. that the
pipeline does not stall infinitely often) remain for future
work.

We have done a proof-of-concept implementation of our
method, based on the running example presented in this
paper. In the future, we plan to extend this proof-of-concept
implementation to a fully functional synthesis tool based
on our approach. Furthermore we plan to research several
possible improvements. For example, generating the transi-
tivity constraints seems to be a bottleneck of our approach,
in particular when working with BDDs. An approach, with
a refinement loop were transitivity constraints are added
“on demand”, i.e., only when they are needed to prove
equivalence, could alleviate this problem. Moreover, since
BDDs seem to be a suboptimal data structure for this kind
of problem, we currently investigate how QBF-solving tech-
niques and interpolation in equality logic with uninterpreted
functions [15], [26] can be used as alternative methods to
compute control functions. Preliminary experiments suggest
that interpolation in equality logic with uninterpreted func-
tions is a very efficient method for finding control functions.
A thorough analysis, based on an implementation currently
under development, will be done in future work.

REFERENCES

[1] W. Ackermann. Solvable cases of the decision problem.
Studies in Logic and the Foundations of Mathematics, 1954.

[2] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-
LIB Standard: Version 2.0. In A. Gupta and D. Kroening,
editors, Proc. 8th Int. Workshop on Satisfiability Modulo
Theories, 2010.

[3] M. Benedetti. sKizzo: a suite to evaluate and certify QBFs. In
Proc. of 20th Int. Conf. on Automated Deduction (CADE05),
2005. LNCS 3632.

[4] R. Bloem, A. Cimatti, K. Greimel, G. Hofferek,
R. Könighofer, M. Roveri, V. Schuppan, and R. Seeber.
RATSY — a new requirements analysis tool with synthesis.
In Proc. Computer Aided Verification, pages 425–429, 2010.
LNCS 6174.

[5] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli,
and M. Weiglhofer. Specify, compile, run: Hardware form
PSL. In 6th International Workshop on Compiler Optimiza-
tion Meets Compiler Verification, 2007. Electronic Notes in
Theoretical Computer Science http://www.entcs.org/.

[6] A. Bradley, Z. Manna, and H. Sipma. What’s decidable
about arrays? In Verification, Model Checking, and Abstract
Interpretation, pages 427–442. Springer, 2006.

[7] A.R. Bradley and Z. Manna. The Calculus of Computation.
Springer, 2007.

[8] R. E. Bryant and M. Velev. Boolean satisfiability with
transitivity constraints. In E. A. Emerson and A. P. Sistla,
editors, 12th Conference on Computer Aided Verification
(CAV’00), pages 85–98. Springer-Verlag, Berlin, 2000. LNCS
1855.

[9] J. R. Burch and D. L. Dill. Automatic verification of
pipelined microprocessor control. In D. L. Dill, editor, Sixth
Conference on Computer Aided Verification (CAV’94), pages
68–80. Springer-Verlag, Berlin, 1994. LNCS 818.

[10] A. Church. Logic, arithmetic and automata. In Proceedings
International Mathematical Congress, 1962.

[11] E. Clarke and E. Emerson. Design and synthesis of syn-
chronization skeletons using branching time temporal logic.
Logics of Programs, pages 52–71, 1982.

[12] L. de Alfaro and P. Roy. Solving games via three-valued
abstraction refinement. In International Conference on Con-
currency Theory (CONCUR’07), pages 74–89, 2007.

[13] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt
solver. In Proceedings of the Theory and practice of software,
14th international conference on Tools and algorithms for the
construction and analysis of systems, TACAS’08/ETAPS’08,
pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[14] E. Filiot, N. Jin, and J.-F. Raskin. An antichain algorithm
for LTL realizability. In Proc. Computer Aided Verification,
pages 263–277, 2009.

[15] Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstic, and
Cesare Tinelli. Ground interpolation for the theory of equality.
In Stefan Kowalewski and Anna Philippou, editors, Tools and
Algorithms for the Construction and Analysis of Systems,
volume 5505 of Lecture Notes in Computer Science, pages
413–427. Springer Berlin / Heidelberg, 2009.

[16] A. Griesmayer, R. Bloem, and B. Cook. Repair of Boolean
programs with an application to C. In 18th Conference on
Computer Aided Verification (CAV’06), pages 358–371, 2006.
LNCS 4144.

[17] R. Hosabettu, G. Gopalakrishnan, and M. Srivas. Formal ver-
ification of a complex pipelined processor. Formal Methods
in System Design, 23(2):171–213, 2003.

[18] J.H.R. Jiang, H.P. Lin, and W.L. Hung. Interpolating Func-
tions from Large Boolean Relations. In Proceedings of the
International Conference on Computer-Aided Design, pages
779–784. IEEE/ACM, 2009.

[19] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu:
A tool for property synthesis. In Computer Aided Verification,
pages 258–262, 2007.

[20] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair
as a game. In K. Etessami and S. K. Rajamani, editors, 17th
Conference on Computer Aided Verification (CAV’05), pages
226–238. Springer-Verlag, 2005. LNCS 3576.

[21] D. Kroening and O. Strichman. Decision Procedures – An
Algorithmic Point of View. Springer, 2008.

[22] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe
Suter. Complete functional synthesis. In Proceedings of the
2010 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’10, pages 316–329, New
York, NY, USA, 2010. ACM.

[23] O. Kupferman and M. Y. Vardi. Safraless decision proce-
dures. In Foundations of Computer Science, pages 531–542,
Pittsburgh, PA, October 2005.

[24] P. Manolios and S.K. Srinivasan. Automatic verification
of safety and liveness for pipelined machines using WEB
refinement. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 13(3):1–19, 2008.

[25] J. McCarthy. A basis for a mathematical theory of compu-
tation. Computer Programming and Formal Systems, pages
33–70, 1963.

[26] K.L. McMillan. An interpolating theorem prover. Theoretical
Computer Science, 345(1):101–121, 2005.

[27] A. Morgenstern and K. Schneider. Exploiting the temporal
logic hierarchy and the non-confluence property for efficient
LTL synthesis. CoRR, abs/1006.1408, 2010.

[28] E. Nurvitadhi, J.C. Hoe, T. Kam, and S.-L.L. Lu. Auto-
matic pipelining from transactional datapath specifications.
Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 30(3):441 –454, March 2011.

[29] N. Piterman, A. Pnueli, and Y. Sa´ar. Synthesis of reactive(1)
designs. In 7th Int. Conf. on Verification, Model Checking
and Abstract Interpretation, pages 364–380. Springer, 2006.
LNCS 3855.

[30] P. J. G. Ramadge and W. M. Wonham. The control of discrete
event systems. Proceedings of the IEEE, 77:81–98, 1989.

[31] Sven Schewe. Bounded synthesis. In Automated Technology
for Verification and Analysis (ATVA’07), pages 474–488,
2007.

[32] S. Sohail and F. Somenzi. Safety first: A two-stage algorithm
for LTL games. In 9th International Conference on Formal
Methods in Computer Aided Design (FMCAD’09), pages 77–
84, 2009.

[33] Armando Solar-Lezama. The sketching approach to program
synthesis. In Zhenjiang Hu, editor, Programming Languages
and Systems, volume 5904 of Lecture Notes in Computer
Science, pages 4–13. Springer Berlin / Heidelberg, 2009.

[34] F. Somenzi. CUDD: CU Decision Diagram Package. Uni-
versity of Colorado at Boulder, ftp://vlsi.colorado.edu/pub/.

[35] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster.
From program verification to program synthesis. In Proceed-
ings of the 37th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’10, pages
313–326, New York, NY, USA, 2010. ACM.

[36] Martin Vechev, Eran Yahav, and Greta Yorsh. Abstraction-
guided synthesis of synchronization. In Proc. 37th symposium
on Principles of programming languages, POPL ’10, pages
327–338, 2010.

[37] Y. Watanabe and R.K. Brayton. Heuristic minimization of
multiple-valued relations. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 12(10):1458
–1472, October 1993.

