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Abstract. This paper describes the Vinter tool for extracting interpolants from
proofs and minimising such interpolants using various measures. Vinter takes an
input problem written in either SMT-LIB or TPTP syntax, generates so called
local proofs and then uses a technique of playing in the grey areas of proofs
to find interpolants minimal with respect to various measures. Proofs are found
using either Z3 or Vampire, solving pseudo-boolean optimisation is delegated
to Yices, while localising proofs and generating minimal interpolants is done by
Vampire. We describe the use of Vinter and give experimental results on problems
from bounded model checking.

1 Introduction

Craig’s interpolation [3] has become a useful technique for various tasks in software
verification, such as bounded model checking [10], predicate abstraction [8], and loop
invariant generation [11]. It provides a systematic way to generate predicates over pro-
gram states, which are precise enough to prove particular program properties.

Let us introduce some notation and define interpolation through colors. All formulas
in this paper are first-order. We will use the standard notion of an inference, written as
%, where Ay, ..., A, denote the premises and A the conclusion of the inference.
By a derivation or a proof we mean a tree built using inferences, see [9] for details. We
assume that for every inference its conclusion is a logical consequence (in first-order
predicate logic or in some theory) of its premises. If a formula A is derivable from a set
of formulas S, we will write S - A and omit S if it is empty.

We will use three colors: blue, red and grey. Each symbol is colored in exactly
one of these colors. By a symbol we mean a function or a predicate symbol; logical
variables are not symbols. We say that a formula is red if it has at least one red symbol
and contains only red and grey symbols. Similarly, a blue formula has at least one blue
symbol and contains only blue and grey symbols. A formula is grey if all symbols
in this formula are grey. Let R be a red formula, B a blue formula and - R — B.
We call an interpolant of R and B any grey formula [ such that (i) - R — I and
(ii) = I — B. That is, an interpolant [ is in intermediate in power between R and
B, and uses only grey symbols. Likewise, if {R, B} is unsatisfiable, then a reverse
interpolant of R and B is any grey formula I such that (i) - R — I and (ii) {I, B} is
unsatisfiable. Interpolation-based verification methods make use of reverse interpolants,
where R typically encodes a bounded program trace and B describes a property which
is violated at the end of the trace.
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Fig. 1. Architecture of Vinter.

If {R, B} is unsatisfiable and we have a derivation IT of L from {R, B}, where L
denotes a (grey) formula which is always false, we are interested in extracting a reverse
interpolant from [I. There are algorithms [10, 9] for extracting a reverse interpolant
from derivations satisfying a locality condition: a derivation is called /ocal if no infer-
ence in this derivation contains both a red and a blue symbol. A derivation that is not
local is called non-local.

In [7] we observe that changes in the grey parts of local proofs, that is, parts con-
sisting of only grey formulas, can make significant changes in the interpolants extracted
from proofs. Based on this observation, we defined the notion of grey slicing transfor-
mations of proofs and showed that all such transformations can be captured by a propo-
sitional formula in the following sense. Given a proof /I we can find a propositional
formula p such that p is true on a proof I’ if and only if IT’ is a local proof obtained
from II by grey slicing. This propositional formula, together with some size measures
of formulas, can be used for building small interpolants by running a pseudo-boolean
optimisation tool. Small interpolants are believed to be good for end-applications since
they are easier to use in proofs and are more likely to generalise than larger ones.

While the method of [7] is general and can be used for generating small interpolants,
the power of the method was not well understood. One of the reason was lack of realistic
examples coming from state-of-the-art model checkers. Another major obstacle to the
evaluation of [7] on realistic examples was lack of a standalone tool that would take
as input an interpolation problem generated by a model checker and output minimal
interpolants in a fully automatic way.

We address these problem by implementing the Vinter tool that implements the
interpolant minimisation technique together with the technique of localising non-local
proofs (Section 2). Vinter takes an input problem written in either SMT-LIB [1] or TPTP
syntax [14], generates local proofs and then finds interpolants minimal with respect to
various measures. Proofs are found using either Z3 [4] or Vampire [13], solving pseudo-
boolean optimisation is delegated to Yices [5], while localising proofs and generating
minimal interpolants is done by Vampire.

In our previous paper [6] we already described an implementation of interpolation
in Vampire. Vinter is a new tool whose aim is to generate a minimal interpolant. The
only feature it shares with [6] is a generation of local proofs using Vampire. Translation
of non-local proofs into local ones, use of SMT problems and SMT-LIB syntax instead
of annotated TPTP problems, automatic annotation of problems and, most importantly,
the interpolant minimisation technique implementing [7] are novel.



Vinter is available at http://vprover.org/vinter.cgi. We evaluated Vinter on examples
coming from the software model checker CPAchecker [2]. The results of this evaluation
are presented in Tables 1-5 and detailed in Section 3.

The contribution of this paper comes with presenting what Vinter can do and how it
can be used. We comment briefly on how Vinter obtains its results and refer to [7] for
details. This paper is intended as a brief guide to generating minimal interpolants with
Vinter.

2 Tool Description

Figure 1 shows the architecture of Vinter. Vinter is run on an input problem, called the
interpolation problem, and accepts two options denoting the input syntax (SMT-LIB or
TPTP) and the theorem prover (Vampire or Z3) used for proving.

Given an input formula, Vinter makes the following steps: (i) creation of an inter-
polation problem (formulas annotated with coloring information); (ii) generation of a
local proof; (iii) grey slicing analysis resulting in a pseudo-boolean constraint; (iv) solv-
ing the constraint; (v) generation of a minimal interpolant. In this section we explain all
these steps in some detail.

Annotated Formulas and Interpolation Problems. To specify an interpolation prob-
lem, one needs to specify two formulas 17 and B, together with the coloring information.
However, both the SMT-LIB and TPTP syntax describe only first-order problems. To
specify interpolation problems, we extended the TPTP syntax as described in [6]. For
example, one can use the following annotations to specify colors:

vampire (symbol, function, symbol_name, symbol_arity, symbol_color).

However, these color annotations can only be understood by Vampire, and are used by
Vampire to produce local proof.

For the SMT-LIB syntax we chose a different convention to specify colors. This con-
vention was chosen by analysing bounded model checking problems in SMT-LIB. Such
problems describe several unfoldings of computations going through several program
states 0, 1, . ... One common way of describing such problems in the SMT community
is to turn state variables into functions of one argument (the state). For example, the
term f(1) denotes the value of state variable f at state 1.

To extract an interpolation problem from an SMT problem we “reverse engineer”
SMT problems in the following way. If the SMT problem contains a unary function f
which is only applied to integer constants, we consider it a state variable and replace
any term of the form f(7) by a constant f;. After that we take a “middle state” m (the
average integer value of all states) and consider all terms f, for £ < m red and terms fj,
for £ > m blue. The term f,, is considered grey. This corresponds to the standard use
of interpolation in bounded model checking. Further, we consider the conjunction of all
formulas containing red symbols as R and the conjunction of all formulas containing
blue symbols as B.

Finally, if Vinter is run with Vampire, the interpolation problem written in the SMT-

LIB syntax is translated into a TPTP problem with color annotations.
Generation of a Local Proof. This step depends on which theorem prover we use. We
need a proof-producing theorem prover and ideally a prover producing local proofs.
So far, there is not much choice on the market. Z3 seems to be the most efficient
SMT solver that produces proofs which are usually non-local. Many first-order theo-
rem provers produce proofs but only Vampire can produce local proofs [6].
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Fig. 3. Local proof IT> obtained by slicing
Fig. 2. Local proof 1. off G in Figure 2.

If Vinter is run using Vampire, we pass the interpolation problem to Vampire and use
the option that makes it search only for local refutations. That is, if Vampire produces a
proof, the proof is local.

If Vinter is run using Z3, in general we can only obtain non-local proofs. Then we
use the technique of [7] to transform them into local proofs. This technique existentially
quantifies away uninterpreted colored constants to make a non-local proof into a local
one. In this paper however we do a bit more than [7]: instead of quantifying away only
red symbols, we also existentially quantify away blue symbols. Tables 1-3 show the
effect of quantifying away different colors.

Transforming non-local Z3 proofs into local ones by quantifying away colored sym-
bols is also used in [12]. The method described in [12] also implements additional steps,
such as eliminating quantifier instantiations and using a secondary interpolating prover
for proof subtrees that cannot be localised. While the approach of [12] is more general
than ours when it comes to localise Z3 proofs, it is quite specific to the set of proof rules
used by Z3. Let us therefore note that our proof localisation can be applied to arbitrary
SMT proofs. Moreover, Vinter is not restricted to SMT proofs only. To the best of our
knowledge, Vinter is the first tool that generates interpolants both from SMT proofs and
first-order resolution proofs, and minimises interpolants wrt various measures.

Grey Slicing. After obtaining a local proof II, either by Vampire or by localising a
73 proof, Vinter implements the main idea of the interpolant minimisation method: it
encodes all grey slicing transformations of this local proof by a propositional formula
P. Grey slicing is described in [7]. It is based on the idea that some grey formulas can
be removed from a local proof without destroying locality and their removal can change
the interpolant extracted from the proof.

Example 1. Let us illustrate how grey slicing changes the interpolants extracted from a
local proof. Consider the local proof I7; given in Figure 2. Using the method of [9], the
reverse interpolant extracted from [7; is —=Gbs.

By slicing off the grey formula G, that is by performing grey slicing with G5 in
1I,, we obtain the local proof IIs given in Figure 3. The reverse interpolant extracted
from Il is =G4. Note that both =G5 and =G4 can be used as a reverse interpolant
extracted from I7.

The propositional formula P encoding all grey slicing transformations of a local
proof I is built by Vinter such that every satisfying assignment to P represents a local
proof obtained from IT by grey slicing. Moreover, for every grey formula G in II the
formula P contains a variable pg that is true if and only if G occurs in the interpolant.
When constructing the formula P we use the property that I7 is local. That is, a grey
formula G in IT is either a leaf of II or the conclusion of an inference satisfying ex-
actly one of the following conditions: (i) the inference has only grey premises; (ii) the
inference has at least one red premise and its all other premises are red or grey; (iii) the
inference has at least one blue premise and its all other premises are blue or grey. De-
pending on the inference introducing G in I, we generate formulas over pg expressing



|| # benchmarks | # local proofs |

Vampire [ 4217 [ 1903 |
73 4217 3593
red 3501
blue 3517

Table 1. Vinter results using Vampire, respectively Z3.

under which conditions G is used in the interpolant constructed from II. We then take
P as the conjunction of all formulas over pg.

The derived formula P allows us to optimise the extracted interpolant using vari-
ous measures, such as the total number of different symbols in the interpolant, the total
number of different atoms, or the total number of quantifiers in such atoms. The min-
imisation problem can be described as a pseudo-boolean constraint using P and a linear
expression built from variables pg. For example, if we are interested in generating an
interpolant that uses a minimal number of quantifiers, we construct the linear expres-
sion ), quant(G)-p¢ and derive the pseudo-boolean constraint ming (Y-, quant(G)-
pa N P), where quant(G) denotes the number of quantifiers in G. A solution to this
constraint yields an interpolant that is minimal in the number of quantifiers.

The grey slicing and the pseudo-boolean constraint construction steps of Vinter are
implemented in Vampire.

Solving the Constraint. We pass the resulting pseudo-boolean constraint to Yices [5]
and generate a satisfying assignment that it is minimal wrt a given measure. In order
to compute the minimal solution of the pseudo-boolean constraint, we use a divide-
and-conquer approach to constrain the minimal value of the solution. That is, we make
iterative calls to Yices until the upper and lower bounds on the solution become tight.
For solving pseudo-boolean constraints we chose Yices since Yices runs under all recent
versions of Windows, Linux and MacOS. One could expect that using pseudo-boolean
constraint solvers instead of Yices and generating suboptimal solutions will give a con-
siderable improvement in the pseudo-boolean constraint solving part of Vinter. We leave
this task for future work.

Generation of a Minimal Interpolant. If Yices finds a minimal solution, we recon-
struct a local derivation corresponding to this solution and use the algorithm of [9] to
extract an interpolant from it. This part of Vinter is also implemented in Vampire.

3 Experimental Results

Generating interpolation problems, localising proofs, grey slicing and minimising in-
terpolants are written in C++, using all together 4209 lines of C++ code. In addition,
Vinter contains about 200 lines of shellscript code for merging its various parts and
realising the architecture of Figure 1. All experiments described in this section were
obtained on a 64-bit 2.33 GHz quad core Dell machine with 12 GB RAM.

Benchmarks. In [7] we reported on initial results on generating minimal interpolants,
by using examples from the TPTP and the SMT-LIB libraries. Experiments on more
realistic verification benchmarks, that is on examples coming from concrete verification
tools were left for future study.

In this paper, we address this task and evaluate Vinter on 4217 examples generated
by the software model checker CPAchecker [2]. Some of these examples are also used in
the software verification competition — see http://sv-comp.sosy-lab.org/benchmarks.php.



[ benchmark [ measure [[ no[>1]>2]> 3[> 5] [benchmark [measure [ no[ > 1] >2[>3[>5]

all weight || 3219 282 | 54| 24 4| [all weight || 2096 | 1367 30| 20 4
all atoms 3417 84| 25 5 all atoms 3434 54 24 5
all quant 3501 all quant 2392 10 | 1115
ssh weight 9| 62| 18 ssh weight 74 72 18
ssh atoms 160 1 ssh atoms 162 2
ssh quant 161 ssh quant 159 5
systemc weight 806 | 199 | 22 17 2 | | systemc weight 804 | 192 5 15 2
systemc atoms 936 | 69 18 3 systemc atoms 951 45 19 3
systemc quant 1005 systemc quant 995 10 13
nested weight || 2314 | 21 14 7 2| | nested weight 1218 | 1103 7 5 2
nested atoms 2321 14 7 2 nested atoms 2321 7 5 2
nested quant 2335 nested quant 1238 1097
Table 2. Minimal interpolants extracted from localised ~ Table 3. Minimal interpolants extracted from localised
Z3 proofs, after quantifying away red symbols. Z3 proofs, after quantifying away blue symbols.

To be precise, we took the following three benchmark suites: ControlFlowlInteger ex-
amples that express properties about the control-flow structure and the integer variables
of programs; SystemC examples about concurrent programs; and Nested loop examples.
From each of these 4217 examples we generated interpolation problems for Vinter, as
follows. We used CPAchecker to determine the reachability of error locations in the
benchmark files. Each time an error location was encountered, the unsatisfiable formula
encoding the infeasibility of the error-prone program path was output in the SMT-LIB
format. These SMT-LIB examples were further used as inputs to Vinter. All SMT-LIB
examples we used CPAchecker involved linear arithmetic and uninterpreted functions.

Generating local proofs. The interpolation problems coming from CPAchecker are
using few quantifiers, but have a deeply nested linear arithmetic structure. Such prob-
lems can be efficiently proved by SMT solvers, such as Z3. On the contrary, first-order
theorem provers, such as Vampire, are good in dealing with quantifiers but have difficul-
ties with theory reasoning. Theory reasoning in Vampire is supported by using sound
but incomplete theory axiomatisations. On the other hand, when we run Vinter with
Vampire, whenever Vampire produces a proof, the proof is local. This is not the case
with Z3, essentially proofs produced by Z3 are non-local and thus need to be localised
for interpolant generation. Depending which theorem prover Vinter is using, generating
minimal interpolants becomes challenging due to theory reasoning and/or proof locali-
sation.

Table 1 gives an overview of Vinter’s results on the CPAChecker benchmarks. The
first column of Table 1 specifies the prover used for finding proofs, the second column
the number of interpolation problems, and the third column the number of examples
for which a local proof was found. When Vinter was run with Z3, Table 1 also list the
number of localised proofs by quantifiying away the red, respectively the blue constants.

When we ran Vinter with Z3, all 4217 CPAchecker examples were proved by Z3
in essentially no time. However, when considering color annotations over the proof
symbols, the proof localisation step of Vinter generated local proofs for 3593 examples
out of the 4217 examples. Some of these proofs could only be localised by quantifying
away the blue (respectively, the red) constants. More precisely, by analysing our results,
we observed that 3501 Z3 proofs were localised by quantifying away the red constants,
and 3517 Z3 proofs were localised when we quantified away the blue constants. Our
experiments give thus practical evidence that our extension to [7] for quantifying away
either red or blue symbols effects interpolant minimisation. Combining red and blue
symbol quantification in the same non-local proof is an interesting task to investigate.



[ benchmark [ measure [ no [>T1[>2[>3[>5[>10] >20] > 50|

all weight 1266 | 637 | 217 | 152 81 22 8 2
atoms 1702 | 201 | 111 18 2
quant 1833 70 47 8
ssh-simpl | weight 85 8 4 4 3 1
atoms 84 1 1
quant 85
systemc weight 592 53 29 16 11 8
atoms 616 16 13
quant 645
nested weight 597 | 576 | 184 | 132 67 13 8 2
atoms 1002 | 171 97 18 2
quant 1103 70 47 8
Table 4. Minimal interpolants extracted from Vampire proofs.

When evaluating Vinter using Vampire on the 4217 CPAchecker examples, we ran
Vampire with a 60 seconds time limit. The CPAchecker examples expressed in the SMT-
LIB syntax were translated by Vinter into an annotated Vampire input. Using the color-
ing annotations over the input symbols, Vampire produced local proofs for 1903 bench-
marks out of the 4217 examples. For the remaining 2314 examples, Vampire failed to
generate a proof. One reason why Vampire failed to produce a proof was that these ex-
amples have a deeply nested linear arithmetic structure. In addition, we also observed
that the coloring annotations may lead to performance degradation in Vampire’s rea-
soning processes. We believe that improving the theory reasoning and the local proof
generation engines of Vampire would yield better performances of Vinter.

Generating minimal interpolants. Vinter implements the following three measures
to minimise interpolants: (i) the number of symbols (weight measure), (ii) the number
of atoms (atom measure), and (iii) the number of quantifiers (quant measure) in the in-
terpolant. For solving the pseudo-boolean optimization problems describing minimality
constraints over interpolant formulas, we ran Yices with a timeout of 126 seconds.

Tables 2 and 3 summarise our results on minimising interpolants extracted from Z3
proofs, whereas Table 4 reports on our experiments for generating minimal interpolants
from Vampire proofs. The first column of these tables lists the set of CPAchecker ex-
amples: all refers to all benchmarks for which minimal interpolants were generated,
whereas ssh, systemc and nested denote examples out of all these benchmarks which
come from the ControlFlowlInteger, SystemC, and Nested benchmark suites. For each
benchmark set, the second column shows the measure used for minimising interpolants.
Similarly, for each benchmark set, columns starting with column three present the num-
ber of those examples for which the measure decreased and by the factor given in the
headers of the columns. For example > 2 means that the measure increased by a fac-
tor greater than 2. Note that the best improvement was obtained by running Vampire,
and especially on the nested benchmarks. This means that having initial proofs of good
quality is crucial for the success of the method.

Table 5 illustrates the sizes of interpolants before and after weight minimisation.
For example, one can see that on all examples, 37 interpolants had the weight > 50
before minimisation and only 5 of them had a weight > 50 after the minimisation. Note
that the largest interpolants (with 100-500 symbols) were all minimised.

By analysing our results, we also encountered problems on which Vampire pro-
duced local proofs, and hence interpolants, but the Z3 proof could not be localised and
thus interpolants could not computed.



[ benchmark | [ 0] >1[>3[>5[>10]>20]>50]>100]

all before | 524 | 1379 | 1303 | 770 348 121 37 6
after | 524 | 1379 | 1248 | 396 226 46 5

ssh-simpl before 8 77 75 13 3 1 1
after 8 77 71 6 2 1 1

systemc before | 360 | 285 | 227 | 152 41 9 3
after 360 | 285 | 219 | 124 17 2

nested before | 156 | 1017 | 1001 | 605 304 111 33 6
after 156 | 1017 | 958 | 266 207 43 4

Table 5. Comparing the weight of CPAchecker interpolants before and after minimisation, using Vampire proofs.

Summarising, we believe that the experimental results of Tables 2-5 indicate that
Vinter can be successfully used for generating small interpolants and that the effect of
minimisation is better when the initial proofs are local. For example, Vinter could some-
times decrease the weight of interpolants by a factor of more than 100. We believe that
Vinter can help software verification tools deal with significantly smaller interpolants.

4 Conclusions

We describe the Vinter tool for localising proofs, extracting interpolants from local
proofs and minimising interpolants using various measures. We present the use of Vinter
and evaluate Vinter on a collection of bounded model checking examples. Future work
includes integrating Vinter with end-applications and generating interpolation-friendly
proofs.
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