
1

Reactive Synthesis for Cyber-Physical System
Control

Rüdiger Ehlers
University of Bremen & DFKI GmbH

RiSE Workshop, Pöllauberg, Austria, September 2016

2

Synthesis of reactive systems

Specification

+

Input = {u, . . .}
Output = {v , . . .}

⇒

Realizable

Not realizable

Input
O

utput

3

Synthesis of CPS controllers

Main Question
How to deal with the continuous and discrete aspects of the
problem at the same time?

Approaches
1 Abstraction of the continuous world into the purely discrete

world + discrete synthesis (e.g., Nilsson et al., 2016)
2 Simplifying the continuous parts (Linear hybrid automata /

Timed automata) and using a specialized synthesis algorithm
for the resulting mixed discrete/continuous model (e.g.,
Benerecetti et al., 2013; Papusha et al., 2016)

3 “Continuization” of the discrete parts and using purely
continuous methods for controller computation

4

Using a discrete abstraction

Discrete
Controller

Continuous
Controller

Physical
Environment

High-level
commands

Discretized
sensor
values

Control
inputs

Sensor
values

5

Using a discrete abstraction

Discrete
Controller

Continuous
Controller

Physical
Environment

High-level
commands

Discretized
sensor
values

Control
inputs

Sensor
values

6

Discrete synthesis for CPS – Example

Based on joint work with Ufuk Topcu, HSCC 2014

6

Discrete synthesis for CPS – Example

Input/Output
Input:

(Sensed) positions of the robots

Delivery requests

Output:

Up/Left/Right/Down command
of the red robot

Pickup/drop actions of the red
robot

Based on joint work with Ufuk Topcu, HSCC 2014

6

Discrete synthesis for CPS – Example

Guarantees
Whenever a button is pressed,
then the robot is eventually at
the lower left region and
performing a pick-up action,
while later being in the top right
region, performing a drop
action, without performing a
drop action in between.

No crashes between the robots

Based on joint work with Ufuk Topcu, HSCC 2014

6

Discrete synthesis for CPS – Example

Assumptions
Obstacle can only move in
every second step

Obstacle can only move by one
cell per direction per step

x position of the robot is
updated according to its choice

y position of the robot is
updated according to its choice

No robot jumps further that one
cell are possible

Based on joint work with Ufuk Topcu, HSCC 2014

7

Assumptions and guarantees in specifications

Specification shape(∧
Assumptions

)
→

(∧
Guarantees

)

8

Reactive synthesis – Complexity vs. expressivity

CTL*

CTL LTL

GR(1)

GR(1) synthesis applications
On-chip bus arbiter (Bloem et al., 2007b,a; Godhal
et al., 2011)

High-level robot control (Kress-Gazit et al., 2009;
Raman et al., 2013; Jing et al., 2013)

Vehicle power management (Ozay et al., 2011a)

Camera network control (Ozay et al., 2011b)

...

8

Reactive synthesis – Complexity vs. expressivity

CTL*

2EXPTIME

CTL

EXPTIME

LTL

2EXPTIME

GR(1)

EXPTIME

GR(1) synthesis applications
On-chip bus arbiter (Bloem et al., 2007b,a; Godhal
et al., 2011)

High-level robot control (Kress-Gazit et al., 2009;
Raman et al., 2013; Jing et al., 2013)

Vehicle power management (Ozay et al., 2011a)

Camera network control (Ozay et al., 2011b)

...

8

Reactive synthesis – Complexity vs. expressivity

CTL*

2EXPTIME

CTL

EXPTIME

LTL

2EXPTIME

GR(1)

EXPTIME

GR(1) synthesis applications
On-chip bus arbiter (Bloem et al., 2007b,a; Godhal
et al., 2011)

High-level robot control (Kress-Gazit et al., 2009;
Raman et al., 2013; Jing et al., 2013)

Vehicle power management (Ozay et al., 2011a)

Camera network control (Ozay et al., 2011b)

...

9

So is that the end of the story?

And everyone lived happily ever after...

9

So is that the end of the story?

And everyone lived happily ever after...

...well, not quite. There is also:

Noise

Imprecise modelling of the environment

Incomplete information

Scalability

Robustness / Error-resilience

Quirks of the synthesis algorithm

...

10

Controlling (Cyber-)physical systems

Plant

Controller

N

N

10

Controlling (Cyber-)physical systems

Plant

Controller

N

N

10

Controlling (Cyber-)physical systems

Plant

Controller

N

N

a

b

c

10

Controlling (Cyber-)physical systems

Plant

Controller

N

N

10

Controlling (Cyber-)physical systems

Plant

Controller

N

N

10

Controlling (Cyber-)physical systems

Plant

Controller

N

N

10

Controlling (Cyber-)physical systems

Plant

Controller

N

N

a

b

c

d

e

f

g

11

Example for error-resilience

12

Focus of this talk

A few answers to how we can deal with...
Noise

Imprecise modelling of the environment

Incomplete information

Scalability

Robustness / Error-resilience

Quirks of the synthesis algorithm

...

13

Synthesizing error-resilient
implementations

Based on joint work with Ufuk Topcu, HSCC 2014

14

Example for (discrete) robustness (revisited)

Assumptions
Obstacle can only move in
every second step

Obstacle can only move by one
cell per direction per step

x position of the robot is
updated according to its choice

y position of the robot is
updated according to its choice

No robot jumps further that one
cell are possible

Based on joint work with Ufuk Topcu, HSCC 2014

15

Spectrum of robustness (in discrete synthesis)

Most robust

Least robust

k -resilient synthesis

Ratio games (Bloem et al., 2009)

→ n Assumption violations
→ m Guarantee violations allowed
→(Bloem et al., 2010)

This figure is certainly not complete and only lists some approaches.

16

k -Resilient synthesis (Def.: Huang et al., 2012)

time

≤ k
glitches

≥ b
steps

≤ k
glitches

≥ b
steps

≤ k
glitches

≥ b
steps

. . .

Algorithmic approach
Given a GR(1) specification ψ and k , we can encode the k -resilient
synthesis problem of ψ by translating ψ to a modified GR(1)
specification ψ′ and perform GR(1) synthesis for ψ′.

16

k -Resilient synthesis (Def.: Huang et al., 2012)

time

≤ k
glitches

≥ b
steps

≤ k
glitches

≥ b
steps

≤ k
glitches

≥ b
steps

. . .

Algorithmic approach
Given a GR(1) specification ψ and k , we can encode the k -resilient
synthesis problem of ψ by translating ψ to a modified GR(1)
specification ψ′ and perform GR(1) synthesis for ψ′.

17

The Reduction from GR(1) to GR(1) in a nutshell

A counter for k
We ask the system to be synthesized to output a counter that
says how many glitches can be tolerated in the near future.

If glitches stop occurring, then the system must eventually set
the counter back to k .

Effect
Quantification over b is abstracted by a liveness property

Idea can be implemented by altering the specification.

18

Example: Robot patrolling

18

Example: Robot patrolling

18

Example: Robot patrolling

19

Synthesizing cooperative
controllers

Based on joint work with Roderick Bloem and Robert Könighofer,
IROS 2015

20

Demo

21

Main problem

Main problem
How can we synthesize cooperative high-level robot
controllers?

Naive approaches to solving this problem
Require the system to satisfy the specification even if the
environment is naughty

Change the specification to prevent uncooperative behavior

Our approach
We modify the main generalized reactivity(1) synthesis
approach to compute only cooperative controllers.

21

Main problem

Main problem
How can we synthesize cooperative high-level robot
controllers?

Naive approaches to solving this problem
Require the system to satisfy the specification even if the
environment is naughty → assumptions are needed

Change the specification to prevent uncooperative behavior

Our approach
We modify the main generalized reactivity(1) synthesis
approach to compute only cooperative controllers.

21

Main problem

Main problem
How can we synthesize cooperative high-level robot
controllers?

Naive approaches to solving this problem
Require the system to satisfy the specification even if the
environment is naughty → assumptions are needed

Change the specification to prevent uncooperative behavior

Our approach
We modify the main generalized reactivity(1) synthesis
approach to compute only cooperative controllers.

21

Main problem

Main problem
How can we synthesize cooperative high-level robot
controllers?

Naive approaches to solving this problem
Require the system to satisfy the specification even if the
environment is naughty → assumptions are needed

Change the specification to prevent uncooperative behavior
→ defeats the purpose of synthesis

Our approach
We modify the main generalized reactivity(1) synthesis
approach to compute only cooperative controllers.

21

Main problem

Main problem
How can we synthesize cooperative high-level robot
controllers?

Naive approaches to solving this problem
Require the system to satisfy the specification even if the
environment is naughty → assumptions are needed

Change the specification to prevent uncooperative behavior
→ defeats the purpose of synthesis

Our approach
We modify the main generalized reactivity(1) synthesis
approach to compute only cooperative controllers.

22

Making GR(1) synthesis cooperative

Synthesis objective
All executions must be correct.

From every state of the synthesized controller, there must
always be an execution on which the assumptions are
satisfied.

Implementation: Safety
Prevent the system from issuing a next output that forces the
environment to subsequently violate its specification

Implementation: Liveness
Modify the GR(1) fixpoint computation

22

Making GR(1) synthesis cooperative

Synthesis objective
All executions must be correct.

From every state of the synthesized controller, there must
always be an execution on which the assumptions are
satisfied.

Implementation: Safety
Prevent the system from issuing a next output that forces the
environment to subsequently violate its specification

Implementation: Liveness
Modify the GR(1) fixpoint computation

22

Making GR(1) synthesis cooperative

Synthesis objective
All executions must be correct.

From every state of the synthesized controller, there must
always be an execution on which the assumptions are
satisfied.

Implementation: Safety
Prevent the system from issuing a next output that forces the
environment to subsequently violate its specification

Implementation: Liveness
Modify the GR(1) fixpoint computation

23

Standard GR(1) fixpoint equation

νZ .
∧

j∈{1,...,n}

µY .
∨

i∈{1,...,m}

νX .EnfPre
(
(Z ′ ∧ ψg

j) ∨ Y ′ ∨ (¬ψa
i ∧ X ′)

)

24

Cooperative GR(1) synthesis

νZ .
∧

j∈{1,...,n}

µY .
∨

i∈{1,...,m}

νX .EnfPre
(
(Z ′ ∧ ψg

j) ∨ Y ′ ∨ (¬ψa
i ∧ X ′)

)
∧ µR .Reach

(
(ψ

g
j ∨ Y ′ ∨ R ′) ∧ X

)
∧

∧
k∈{1,...,m}

µR .Reach
(
(ψa

k ∨ R ′) ∧ Z
)

25

Demo

26

Optimal control in adversarial
environments

Based on joint work with Gangyuan Jing and Hadas
Kress-Gazit

(published at IROS 2013)

27

Adding an optimization criterion

Basic idea
In addition to the specification, we introduce a cost function.

↑↓

Example due to Chatterjee and Henzinger (2006)

27

Adding an optimization criterion

Basic idea
In addition to the specification, we introduce a cost function.

↑↓

Example due to Chatterjee and Henzinger (2006)

28

Adding an optimization criterion

Specification parts
The door can be open or closed.

∀i ∈ {1, 2, 3, 4}: If button i is pressed, floor i is eventually
visited with the door open.

At every step, the current floor number is not increased or
decreased by more than one.

The current floor number can only be changed if the door is
closed.

The “door close” command can fail or succeed, while the
“open door” command always succeeds.

Optimization criterion / cost function
Every operation has a (fixed) cost.

We want to minimize the average cost per execution step.

29

What is an optimal strategy?

Optimal strategy (mean-payoff)
Service requests for 1 step, then wait for 1 step, then

service requests for 1 step, then wait for 2 steps, then

service requests for 1 step, then wait for 3 steps, then

. . .

So what now?
We need to fix either:

specification

weigths/costs

29

What is an optimal strategy?

Optimal strategy (mean-payoff)
Service requests for 1 step, then wait for 1 step, then

service requests for 1 step, then wait for 2 steps, then

service requests for 1 step, then wait for 3 steps, then

. . .

So what now?
We need to fix either:

specification

weigths/costs

optimization objectives

29

What is an optimal strategy?

Optimal strategy (mean-payoff)
Service requests for 1 step, then wait for 1 step, then

service requests for 1 step, then wait for 2 steps, then

service requests for 1 step, then wait for 3 steps, then

. . .

So what now?
We need to fix either:

specification

weigths/costs

optimization objectives

30

Example

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

Specification parts

Assumptions: Guarantees
GF(open1) G(¬open1 → X(¬r3)))
GF(open2) G(¬open2 → X(¬r5))) Fr7

GF(open3) G(¬open3 → X(¬r10)))

30

Example

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

Specification parts

Assumptions: Guarantees
GF(open1) G(¬open1 → X(¬r3)))
GF(open2) G(¬open2 → X(¬r5))) Fr7

GF(open3) G(¬open3 → X(¬r10)))

31

Introducing “action cost”

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

Computing action cost along a path
Take the sum of costs until reaching the next goal

31

Introducing “action cost”

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

2 1 1 1 1 2

3

2 2 2 2

3

Computing action cost along a path
Take the sum of costs until reaching the next goal

31

Introducing “action cost”

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

2 1 1 1 1 2

3

2 2 2 2

3

Computing action cost along a path
Take the sum of costs until reaching the next goal

32

Characterizing waiting in strategies

Basic idea
Waiting in strategies can be detected by looking at the SCCs.

But what about repetitive tasks?
Here, we count SCCs up to the point of reaching the next goal.

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

32

Characterizing waiting in strategies

Basic idea
Waiting in strategies can be detected by looking at the SCCs.

But what about repetitive tasks?
Here, we count SCCs up to the point of reaching the next goal.

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

32

Characterizing waiting in strategies

Basic idea
Waiting in strategies can be detected by looking at the SCCs.

But what about repetitive tasks?
Here, we count SCCs up to the point of reaching the next goal.

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

32

Characterizing waiting in strategies

Basic idea
Waiting in strategies can be detected by looking at the SCCs.

But what about repetitive tasks?
Here, we count SCCs up to the point of reaching the next goal.

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

33

Conditions on the specification

Idea
If the specification has a set of goals for the system, we can
count the number of waiting cycles for reaching the respective
next goal.

After reaching the next goal, the counter resets.

It is the aim of the system to reach the next goal cheaply.

Using the idea for GR(1) specifications
Still singly-exponential complexity

Strategy shape is the same as for standard GR(1) synthesis:
positional-per-goal

34

Combining action and waiting cost
Two-dimensional cost notion
From every state of a strategy, a strategy has a cost tuple that
describes the cost to reach the next goal.

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

2 1 1 1 1 2

3

2 2 2 2

3

Example
Cost of path 1 from r1: (cw , ca) = (2, 8), cost of path 2: (cw , ca) = (1, 14)
Overall cost: depends on the preference

34

Combining action and waiting cost
Two-dimensional cost notion
From every state of a strategy, a strategy has a cost tuple that
describes the cost to reach the next goal.

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

2 1 1 1 1 2

3

2 2 2 2

3

Example
Cost of path 1 from r1: (cw , ca) = (2, 8), cost of path 2: (cw , ca) = (1, 14)
Overall cost: depends on the preference

35

Preference relations

Preference relations
We use a preference relation ≤P to choose which executions
the strategy should prefer (e.g., (1, 14) ≤P (2, 8)).

The value of a strategy from some state is the highest
combined cost (w.r.t. ≤P) of all executions originating from the
state.

Using the idea for GR(1) specifications
For almost-linear preference relations, we can still compute optimal
strategies in exponential time. They track:

The current atomic proposition values

The “current” liveness assumption and liveness guarantee

Whether ∞ action cost can still be avoided

35

Preference relations

Preference relations
We use a preference relation ≤P to choose which executions
the strategy should prefer (e.g., (1, 14) ≤P (2, 8)).

The value of a strategy from some state is the highest
combined cost (w.r.t. ≤P) of all executions originating from the
state.

Using the idea for GR(1) specifications
For almost-linear preference relations, we can still compute optimal
strategies in exponential time. They track:

The current atomic proposition values

The “current” liveness assumption and liveness guarantee

Whether ∞ action cost can still be avoided

36

Risk-Averse Control of
Markov Decision Processes
with ω-regular Objectives

Based on joint work with Salar Moarref and Ufuk Topcu
(published at CDC 2016)

37

Basic problem setup

Basic Problem
We want to control a Markov decision process (MDP) such
that an ω-regular specification is satisfied...

...but we want to do this in MDPs in which all policies have a
probability of 0 for satisfying the specification.

a 0.6

0.3

0.1

37

Basic problem setup

Basic Problem
We want to control a Markov decision process (MDP) such
that an ω-regular specification is satisfied...

...but we want to do this in MDPs in which all policies have a
probability of 0 for satisfying the specification.

a 0.6

0.3

0.1

38

Example problem

39

So how can we control the system?

Idea
We compute a controller that maximizes the probability to reach
the next goal.

From every goal (or initially), A p-risk averse controller reaches the
next goal with probability at least p.

But what is the next goal?
When working with general ω-regular specifications, this is not so
easy to tell!

39

So how can we control the system?

Idea
We compute a controller that maximizes the probability to reach
the next goal.

From every goal (or initially), A p-risk averse controller reaches the
next goal with probability at least p.

But what is the next goal?
When working with general ω-regular specifications, this is not so
easy to tell!

40

Deterministic Parity Automata

1 1 2 3 4¬a
¬a

¬a

∗

¬a

a

a

a

a

Acceptance
A deterministic parity automaton accepts all words that have a run
on which the highest color occurring infinitely often is even.

40

Deterministic Parity Automata

1 1 2 3 4¬a
¬a

¬a

∗

¬a

a

a

a

a

Acceptance
A deterministic parity automaton accepts all words that have a run
on which the highest color occurring infinitely often is even.

Example (1)

~c = 1 2 1 2 . . .

w = a a a a . . .

40

Deterministic Parity Automata

1 1 2 3 4¬a
¬a

¬a

∗

¬a

a

a

a

a

Acceptance
A deterministic parity automaton accepts all words that have a run
on which the highest color occurring infinitely often is even.

Example (2)

~c = 1 2 1 1 . . .

w = a a a a . . .

40

Deterministic Parity Automata

1 1 2 3 4¬a
¬a

¬a

∗

¬a

a

a

a

a

Acceptance
A deterministic parity automaton accepts all words that have a run
on which the highest color occurring infinitely often is even.

Example (3)

~c = 1 2 3 4 1 2 . . .

w = a a a a a a . . .

41

Connecting Deterministic Parity Automata and MDP
Control

Basic idea
We let the controller always tell the current goal color and when it
just reached a goal.

The controller may always increase the goal color, but decrease it
only finitely a fixed number of times.

Finding p-risk averse policies
For every p ∈ [0, . . . , 1], a p-risk averse control policy has a
finite number of states

Optimal strategies can be computed by solving a series of
optimal reachability policy computations in MDPs.

41

Connecting Deterministic Parity Automata and MDP
Control

Basic idea
We let the controller always tell the current goal color and when it
just reached a goal.

The controller may always increase the goal color, but decrease it
only finitely a fixed number of times.

Finding p-risk averse policies
For every p ∈ [0, . . . , 1], a p-risk averse control policy has a
finite number of states

Optimal strategies can be computed by solving a series of
optimal reachability policy computations in MDPs.

41

Connecting Deterministic Parity Automata and MDP
Control

Basic idea
We let the controller always tell the current goal color and when it
just reached a goal.

The controller may always increase the goal color, but decrease it
only finitely a fixed number of times.

Finding p-risk averse policies
For every p ∈ [0, . . . , 1], a p-risk averse control policy has a
finite number of states

Optimal strategies can be computed by solving a series of
optimal reachability policy computations in MDPs.

42

Estimator-based synthesis

Based on joint work with Ufuk Topcu, HSCC 2015

43

Example application: Distance keeping assistant

d

Observable: Speed of the follower car
Noisily Measured: Distance between cars
Unobserved: Speed of the leader car
Controlled: Acceleration (follower)

44

Synthesis – complexity vs. expressivity (incomplete inf.)

CTL*

CTL LTL

GR(1)

44

Synthesis – complexity vs. expressivity (incomplete inf.)

CTL*

2EXPTIME

CTL

EXPTIME

LTL

2EXPTIME

GR(1)

44

Synthesis – complexity vs. expressivity (incomplete inf.)

CTL*

2EXPTIME

CTL

EXPTIME

LTL

2EXPTIME

GR(1)

2EXPTIME

45

Synthesis with estimators (1/2)

Central question:
How to retain the

singly-exponential complexity of
GR(1) synthesis

under incomplete information?

46

Synthesis with estimators (2/2)

Estimator

Controller

APinp

APestAPact APhid

46

Synthesis with estimators (2/2)

Estimator

Controller

APinp

APestAPact APhid

46

Synthesis with estimators (2/2)

Estimator

Controller

APinp

APestAPact APhid

46

Synthesis with estimators (2/2)

Estimator

Controller

APinp

APestAPact APhid

47

Decoupling estimator computation from synthesis

Main ideas
We decouple the estimation of the physical values and
reactive synthesis using an estimator specification as
glue.

We modify the controller specification to only talk about
observable variables.

Example specification parts

Estimator specification Controller Specification
G(minDistance ≤ distance) G(minDistance ≥ 5)
G(maxDistance ≥ distance)

47

Decoupling estimator computation from synthesis

Main ideas
We decouple the estimation of the physical values and
reactive synthesis using an estimator specification as
glue.

We modify the controller specification to only talk about
observable variables.

Example specification parts

Estimator specification Controller Specification
G(minDistance ≤ distance) G(minDistance ≥ 5)
G(maxDistance ≥ distance)

48

Main correctness proposition

We can soundly reduce the synthesis problem for ϕ under
incomplete information to one over ϕ′ over complete information if

(ϕ′ ∧ G ρe ∧ G ρs) → ϕ

holds.

Modified System
Specification

48

Main correctness proposition

We can soundly reduce the synthesis problem for ϕ under
incomplete information to one over ϕ′ over complete information if

(ϕ′ ∧ G ρe ∧ G ρs) → ϕ

holds.

Modified System
Specification

Environment
Assumptions

48

Main correctness proposition

We can soundly reduce the synthesis problem for ϕ under
incomplete information to one over ϕ′ over complete information if

(ϕ′ ∧ G ρe ∧ G ρs) → ϕ

holds.

Modified System
Specification

Environment
Assumptions

Estimator
Specification

48

Main correctness proposition

We can soundly reduce the synthesis problem for ϕ under
incomplete information to one over ϕ′ over complete information if

(ϕ′ ∧ G ρe ∧ G ρs) → ϕ

holds.

Modified System
Specification

Environment
Assumptions

Estimator
Specification

Original System
Specification

49

Scalable estimator computation

Problem
In general, estimator computation is still a doubly exponential
problem

49

Scalable estimator computation

Our solution
We only consider positional estimators. These may only base
their next estimates on:

the last sensor values and the last estimates

the current sensor values

the possible evolutions of the environment

Properties of our approach
fixed size of the estimators

no “strategic planning” possible by the estimators

unique optimal estimators exist for most estimate preference
relations

50

Example: Discretized car following controller (1)

Properties
distance ∈ {0, . . . , 84, 85}

speedLeader ∈ {0, . . . , 15}

speedFollower ∈ {0, . . . , 15}

accelerationLeader ∈ {−2,−1, 0, 1, 2}

accelerationFollower ∈ {−2,−1, 0, 1, 2}

Noisy distance update

Approximate (±2) distance measurement

. . .

Specification parts
The distance must always be at least 5.

G(distance < 85 ∨ speedFollower = 15)

51

Example: Discretized car following controller (2)

. . .

84
14
4
13
15
83
85

78
15
0
11
12

Meaning of the
encoding :

observedDistance
speedFollower

accFollower
minSpeedLeader
maxSpeedLeader

minDist
maxDist

51

Example: Discretized car following controller (2)

. . .

84
14
4
13
15
83
85

78
15
0
11
12
80
80

Meaning of the
encoding :

observedDistance
speedFollower

accFollower
minSpeedLeader
maxSpeedLeader

minDist
maxDist

52

Example: Discretized car following controller (3)

. . .

84
15
2
13
15
82
83

84
15
2
12
15
82
84

85
15
2

12
15
83
85

85
15
2
10
15
83
85

85
15
2
8
15
83
85

85
15
2
6
15
83
85

85
15
2
4
15
83
85

85
15
2
2
15
83
85

. . .

Meaning of the
encoding :

observedDistance
speedFollower

accFollower
minSpeedLeader
maxSpeedLeader

minDist
maxDist

53

Computing positional estimators

1. Compute the reachable states of any estimator

R = µX .({x0} ∪ {x′ ⊆ APobs ∪ APhid ∪ APest | ∃x ∈ X .

(x \ APest , x′ \ APest) ∈ ρe , (x, x′) ∈ ρs})

2. Compute which estimates are admissible

ρu ={(x, x′) ∈ (2APobs∪APest)2 | ∀y, y′ ⊆ 2APhid :

((x ∪ y) ∈ R ∧ ((x \ APest ∪ y),

(x′ \ APest ∪ y′))) ∈ ρe → ((x ∪ y), (x′ ∪ y′)) ∈ ρs}.

3. Restriction to optimal estimates

ρ̂u = {(x, x′) ∈ ρu : x′|APest = min{x′′|APest : (x, x
′′) ∈ ρu,

= {x′ \ APest = x′′ \ APest }}

54

Discretized car following controller (cont’d)

Computation times with slugs (BDD-based)
Basic scenario: 22+28 minutes

Cruise mode scenario: 22+460 minutes (6 realizability
checks)

Without estimator-based synthesis

Belief space: 216·86 states – beyond tractability

55

Conclusion

56

“Spicing up CPS controller synthesis”

In this talk...
...we discussed a few approaches to make the concept of reactive
synthesis more applicable to CPS controller computation.

But can they be combined?
Apart from the error-resilient synthesis part, they all require
modifications of the synthesis process. → So no!

Ok, so what now?
We will need to research methods to combine the considerations
presented in this talk in a larger framework that still allows for
scalable synthesis!

56

“Spicing up CPS controller synthesis”

In this talk...
...we discussed a few approaches to make the concept of reactive
synthesis more applicable to CPS controller computation.

But can they be combined?
Apart from the error-resilient synthesis part, they all require
modifications of the synthesis process. → So no!

Ok, so what now?
We will need to research methods to combine the considerations
presented in this talk in a larger framework that still allows for
scalable synthesis!

56

“Spicing up CPS controller synthesis”

In this talk...
...we discussed a few approaches to make the concept of reactive
synthesis more applicable to CPS controller computation.

But can they be combined?
Apart from the error-resilient synthesis part, they all require
modifications of the synthesis process. → So no!

Ok, so what now?
We will need to research methods to combine the considerations
presented in this talk in a larger framework that still allows for
scalable synthesis!

57

References I

Massimo Benerecetti, Marco Faella, and Stefano Minopoli. Automatic synthesis of switching controllers for linear hybrid
systems: Safety control. Theor. Comput. Sci., 493:116–138, 2013. doi: 10.1016/j.tcs.2012.10.042. URL
http://dx.doi.org/10.1016/j.tcs.2012.10.042.

Roderick Bloem, Stefan Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Martin Weiglhofer. Interactive
presentation: Automatic hardware synthesis from specifications: a case study. In DATE, pages 1188–1193, 2007a.
doi: 10.1145/1266366.1266622.

Roderick Bloem, Stefan J. Galler, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Martin Weiglhofer. Specify, compile,
run: Hardware from PSL. Electr. Notes Theor. Comput. Sci., 190(4):3–16, 2007b. doi: 10.1016/j.entcs.2007.09.004.
URL http://dx.doi.org/10.1016/j.entcs.2007.09.004.

Roderick Bloem, Karin Greimel, Thomas A. Henzinger, and Barbara Jobstmann. Synthesizing robust systems. In
Proceedings of 9th International Conference on Formal Methods in Computer-Aided Design, FMCAD 2009, 15-18
November 2009, Austin, Texas, USA, pages 85–92, 2009. doi: 10.1109/FMCAD.2009.5351139. URL
http://dx.doi.org/10.1109/FMCAD.2009.5351139.

Roderick Bloem, Krishnendu Chatterjee, Karin Greimel, Thomas A. Henzinger, and Barbara Jobstmann. Robustness in
the presence of liveness. In Computer Aided Verification, 22nd International Conference, CAV 2010, Edinburgh, UK,
July 15-19, 2010. Proceedings, pages 410–424, 2010. doi: 10.1007/978-3-642-14295-6 36. URL
http://dx.doi.org/10.1007/978-3-642-14295-6_36.

Krishnendu Chatterjee and Thomas A. Henzinger. Finitary winning in omega-regular games. In Tools and Algorithms for
the Construction and Analysis of Systems, 12th International Conference, TACAS 2006 Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 25 - April 2, 2006,
Proceedings, pages 257–271, 2006. doi: 10.1007/11691372 17. URL http://dx.doi.org/10.1007/11691372_17.

Yashdeep Godhal, Krishnendu Chatterjee, and Thomas A. Henzinger. Synthesis of AMBA AHB from formal specification:
a case study. International Journal on Software Tools for Technology Transfer, 2011. doi: 10.1007/s10009-011-0207-9.

Chung-Hao Huang, Doron A. Peled, Sven Schewe, and Farn Wang. Rapid recovery for systems with scarce faults. In
Proceedings Third International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2012,
Napoli, Italy, September 6-8, 2012., pages 15–28, 2012. doi: 10.4204/EPTCS.96.2. URL
http://dx.doi.org/10.4204/EPTCS.96.2.

http://dx.doi.org/10.1016/j.tcs.2012.10.042
http://dx.doi.org/10.1016/j.entcs.2007.09.004
http://dx.doi.org/10.1109/FMCAD.2009.5351139
http://dx.doi.org/10.1007/978-3-642-14295-6_36
http://dx.doi.org/10.1007/11691372_17
http://dx.doi.org/10.4204/EPTCS.96.2

58

References II

Gangyuan Jing, Rüdiger Ehlers, and Hadas Kress-Gazit. Shortcut through an evil door: Optimality of
correct-by-construction controllers in adversarial environments. In IROS, pages 4796–4802. IEEE, 2013.

Hadas Kress-Gazit, Georgios E. Fainekos, and George J. Pappas. Temporal-logic-based reactive mission and motion
planning. IEEE Transactions on Robotics, 25:1370–1381, 2009.

Petter Nilsson, Omar Hussien, Ayca Balkan, Yuxiao Chen, Aaron D. Ames, Jessy W. Grizzle, Necmiye Ozay, Huei Peng,
and Paulo Tabuada. Correct-by-construction adaptive cruise control: Two approaches. IEEE Trans. Contr. Sys.
Techn., 24(4):1294–1307, 2016. doi: 10.1109/TCST.2015.2501351. URL
http://dx.doi.org/10.1109/TCST.2015.2501351.

Necmiye Ozay, Ufuk Topcu, and Richard M. Murray. Distributed power allocation for vehicle management systems. In
Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC
2011, Orlando, FL, USA, December 12-15, 2011, pages 4841–4848, 2011a. doi: 10.1109/CDC.2011.6161470. URL
http://dx.doi.org/10.1109/CDC.2011.6161470.

Necmiye Ozay, Ufuk Topcu, Richard M. Murray, and Tichakorn Wongpiromsarn. Distributed synthesis of control protocols
for smart camera networks. In IEEE/ACM Second International Conference on Cyber-Physical Systems (ICCPS),
pages 45–54, Washington, DC, USA, 2011b. IEEE Computer Society. doi: 10.1109/ICCPS.2011.22.

Ivan Papusha, Jie Fu, Ufuk Topcu, and Richard M. Murray. Automata theory meets approximate dynamic programming:
Optimal control with temporal logic constraints. In CDC, 2016. to appear.

Vasumathi Raman, Nir Piterman, and Hadas Kress-Gazit. Provably correct continuous control for high-level robot
behaviors with actions of arbitrary execution durations. In ICRA. IEEE, 2013.

http://dx.doi.org/10.1109/TCST.2015.2501351
http://dx.doi.org/10.1109/CDC.2011.6161470

