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Abstract—The recent discovery of the weakest failure
detector L for message passing set agreement has
renewed the interest in exploring the border between
solvable and unsolvable problems in message passing
systems. This paper contributes to this research by
introducing two novel system models Manti and Msink

with very weak synchrony requirements, where L can
be implemented. To the best of our knowledge, they are
the first message passing models where set agreement
is solvable but consensus is not. We also generalize
L by a novel “(n − k)-loneliness” failure detector
L(k), which allows to solve k-set agreement but not
(k−1)-set agreement.We also present an algorithm that
solves k-set agreement with L(k), which is anonymous
in that it does not require unique process identifiers.
This reveals that L is also the weakest failure detector
for anonymous set agreement. Finally, we analyze the
relationship between L(k) and other failure detectors,
namely the limited scope failure detector Sn−k+1 and
the quorum failure detector Σ.

Index Terms—Failure Detectors; Partial Synchronous
Models; k-Set Agreement

I. INTRODUCTION

In recent years, the quest for weak system models
resp. failure detectors [1], which add just enough
synchrony resp. failure information to purely asyn-
chronous systems to circumvent impossibility re-
sults [2], has been an active research topic in dis-
tributed computing. Most work in this area falls into
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one of the following two categories: (1) Identifying
weak failure detectors, and (2) strengthening the syn-
chrony assumptions of the asynchronous model just
enough to implement these weak failure detectors.

Due to the FLP impossibility result [2], which
established that consensus among n processes with
just f = 1 crash failures is impossible to solve in
asynchronous systems, the focus of (1) was primarily
the consensus problem. After the eventual leader
oracle Ω [3], which eventually outputs the identifier of
one correct process everywhere, was proved to be the
weakest failure detector for solving consensus when
a majority of the processes is correct, the research
primarily shifted towards (2). The first implementation
of Ω was provided by [4] and was based on rather
strong synchrony assumptions (i.e., a variant of the
partially synchronous model of [5]). The subsequent
quest for the weakest synchrony assumptions for
implementing Ω was started by [6], and resulted in
a series of papers [6]–[9] in which the number of
required timely links has been reduced considerably.
In the most recent paper [9], it is shown that a single
eventual moving f -source, i.e., a correct process that
eventually has f (possibly changing) timely outgoing
links in every broadcast, is sufficient for implementing
Ω, and thus for solving consensus. Conversely, [10]
revealed that Ω is sufficient for implementing an
eventual (n− 1)-source.

More recently, set agreement has been identified as
a promising target for further exploring the solvability
border in asynchronous systems. In [11], a failure
detector called anti-Ω was shown to be the weakest
for shared memory systems [12]. Like Ω, anti-Ω also
returns the identifier of some process. The crucial
difference to Ω is that anti-Ω eventually never outputs



the identifier of some correct process and does not
need to stabilize on a single process identifier. A
variant of anti-Ω, called anti-Ωk [11], returns n − k
processes and was first conjectured to be the weakest
failure detector [13] and later shown to be the weakest
failure detector for k-set agreement [14], [15] in
shared memory systems.

In [16], it has been shown that the quorum failure
detector Σ is the weakest to implement shared mem-
ory in a message passing system when a majority of
the processes may fail. Moreover, the combination of
Σ and Ω was proved to be the weakest failure detector
for solving consensus for any number of failures. For
k-set agreement (with k > 1), however, an analogous
combination (i.e., 〈Σ, anti-Ωk〉) is not the weakest
failure detector, as k-set agreement is too weak for
implementing atomic registers, whereas the proof of
〈Σ,Ω〉 being the weakest failure detector for consen-
sus critically depends upon the ability to implement
atomic registers using consensus [17], [18]. Indeed,
besides providing the weakest failure detector L for
(n − 1)-set agreement in message passing systems,
[19] proved that this “loneliness” failure detector L is
strictly weaker than Σ. Thus, the quest for message
passing k-set agreement is still open.

This paper is devoted to k-set agreement in message
passing systems, and provides the following contri-
butions: (1) We introduce two novel system models
Manti and Msink, which provide just enough syn-
chrony to implement L but are not strong enough to
solve consensus. To the best of our knowledge, these
models are the first message passing models where
set agreement is solvable but consensus is not. (2) We
define a novel failure detector L(k) that generalizes
L to k-set agreement, and show that it is sufficient
to solve k-set agreement. Since our L(k)-based k-set
agreement algorithm does not use process identifiers,
it also works in anonymous systems. This implies that
L is also the weakest failure detector for set agreement
in anonymous systems. (3) We show that there is no
algorithm that solves (k−1)-set agreement with L(k).
(4) Finally, we compare L(k) to the limited scope
failure detector Sn−k+1 [20], which has also been
employed for k-set agreement. For the “canonical”
cases (k = 1 and k = n − 1), we show that one
of the two failure detectors is strictly stronger than

the other; for any other choice of k, however, they
are incomparable. As a consequence, neither L(k) nor
Sn−k+1 can be the weakest failure detector for general
k-set agreement.

II. SYSTEM MODELS AND PROBLEM DEFINITION

The models we consider in this paper are based
on the standard asynchronous model of [2], which
we denote byMasync and introduce informally below.
We consider a set Π of n distributed processes,
which communicate via message passing over a fully-
connected point-to-point network made-up of unidi-
rectional links with finite but unbounded message
delays. Links need not be FIFO but are assumed to
be reliable1 for simplicity. Every process executes an
instance of a distributed algorithm and is modeled as
a deterministic state machine. Its execution consists of
a sequence of zero-time steps, where a single process
performs a state transition according to its transition
function, in addition to either receiving a (possibly
empty) set of previously sent messages, or sending
messages to an arbitrary set of processes (including
itself). A run α of a distributed algorithm consists of
a sequence of local steps of all the processes.

For analysis purposes, we assume the existence of
a discrete global clock T , which ticks whenever a
process takes a step. Note that processes do not have
access to T .

Among the n processes, at most f can fail at any
time by crashing. A process may crash within a step
and does not take further steps afterwards. A correct
process is one that never crashes. We call a process
alive at time t if it does not crash before or at time t.
Moreover, a process is alive in a time interval I when
it is alive at every tick of T in I . The failure pattern
of α is a function F : T → 2Π that outputs the set
of crashed processes for a given time t. Clearly, ∀t >
0 : F (t) ⊆ F (t+1). Moreover, let F =

⋃
t>0 F (t) be

the set of faulty processes. The set of possible failure
patterns is called environment. In this paper we admit
any environment that allows up to n− 1 crashes.

A run α is admissible inMasync (1) if every correct
process takes infinitely many steps, (2) a message is
only received at time t by process p if it was sent

1In Section III-C, we discuss relaxations of this assumption.
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by some process q to it at some time t′ 6 t, and
(3) every message sent to p is eventually received if
p is correct. We say that an algorithms halts when it
reaches a terminal state, where it remains for infinitely
many steps.

A. k-Set Agreement

We now state the properties of the k-set agreement
problem [21]. When k = n − 1, the problem is also
referred to simply as set agreement. Every process
starts with a proposal value v and must eventually
irrevocably decide on some value as follows:
k-Agreement: Processes must decide on at most k

different values.
Validity: If a correct process decides on v, then v

was proposed by some process.
Termination: Every correct process must eventually

decide.
Note that the agreement property we use ties together
the decision values of all (correct or faulty) processes.
For k = 1, it is hence equivalent to uniform con-
sensus [22]. Moreover, note that it is well known
that k-set agreement is impossible to solve in purely
asynchronous systems when f > k processes might
crash [23]–[25].

B. Failure Detectors

A failure detector [1] D is an oracle that can be
queried by processes in any step, before making a state
transition. The behaviour of D in a run α depends
on the failure pattern F , which defines the set of
admissible failure detector histories. The value of a
query of a process p in a step at time t is defined
by the history function H(p, t), which maps process
identifiers and time to the range of output symbols of
D. Let A be an algorithm that uses D and let α be a
run of A with failure pattern F (t).

We denote the model where runs are admissible
in Masync and processes can query failure detector
D in any step as (Masync,D). If an algorithm A
solves problem P in (Masync,D), we say that D solves
P . We say that algorithm AD→D′ transforms D to
D′, if processes maintain output variables outputD′

that emulate failure detector histories of D′ that are
admissible for F . We say that D′ is weaker than D and

call D stronger than D′, if such an algorithm AD→D′

exist. If there is also an algorithm AD′→D, we say
that D and D′ are equivalent. If no such algorithm
AD′→D exists, we say that D is strictly stronger than
D′; strictly weaker is defined analogously. If neither
AD→D′ nor AD′→D exists then we say that D and D′
are incomparable. A failure detector D′ is the weakest
for problem P if D is weaker than any failure detector
D that solves P .

Recently, it was shown in [19] that the “loneliness”-
detector L is the weakest failure detector for message
passing set agreement. Intuitively speaking, there is
one (possibly crashed) process where L perpetually
outputs FALSE, and, if all except one process p have
crashed, L eventually outputs TRUE at p forever.

We now present our generalization of L for k-
set agreement, which we denote by L(k) (with L =
L(n − 1)). Instead of loneliness it detects “(n − k)-
loneliness”, i.e., it detects the case where at most n−k
processes are still alive.

Definition 1: The (n−k)-loneliness detector L(k)
outputs either TRUE or FALSE, such that for all
environments E and ∀F ∈ E it holds that there is a
set of processes Π0 ⊆ Π, |Π0| = n− k and a correct
process q such that:

∀p ∈ Π0 ∀t : H(p, t) = FALSE (1)

|F | > k =⇒ ∃t ∀t′ > t : H(q, t′) = TRUE (2)

Another class of failure detectors for k-set agree-
ment are the limited scope failure detectors introduced
by Mostefaoui and Raynal [20]. Such failure detectors
have the strong completeness property (Eq. (4)) of
the strong failure detector S [1], but their accuracy
is limited to a set of processes called the scope (Eq.
(3)). In the special case where the scope comprises
all processes, Sn coincides with S.2 It was shown in
[26] that Sn−k+1 is sufficient for k-set agreement.

Definition 2: The strong failure detector with x-
limited scope is denoted as Sx and is defined such
that for all environments E and ∀F ∈ E , there is a set

2For the case k > f (which is not relevant here as f = n− 1)
[20] also provides a transformation TSk→S .
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Q ⊆ Π : |Q| = x such that:

∃p ∈ (Q \ F ) ∀t ∀q ∈ Q : p 6∈ H(q, t) (3)

∀p ∈ F ∃t ∀q ∈ Π: p ∈ H(q, t) (4)

III. WEAK SYSTEM MODELS FOR SET

AGREEMENT

In this section, we introduce two system models
Manti and Msink with very weak synchrony condi-
tions. By implementing L in both of these models,
we show that they are strong enough to solve set
agreement. In order to allow this, we need to restrict
the set of admissible runs ofMasync by adding some—
albeit very weak—synchrony conditions. While set
agreement is solvable in either one of these models,
the partial synchrony-like assumptions of Msink are
fundamentally different from the time-free message-
ordering properties of model Manti.

A. The model Manti

In some applications, like VLSI Systems-on-Chip
[27], a message-driven execution model [28]–[30],
where computing steps are triggered by the arrival
of messages instead of the passage of time, is advan-
tageous over the usual time-driven execution model.
The model Manti presented in this section belongs to
this category. Inspired by the round-trip-based model
introduced in [31], [32], we specify our synchrony
requirements as conditions on the order of round-trip
message arrivals.

The basic round-trip protocol introduced in [31]
proceeds in asynchronous rounds: Initially, every pro-
cess p sends a (query)-message to all processes, in-
cluding itself. If a process receives a (query)-message
from some process q, it sends a (resp)-message to q.
When p has received at least n−f (resp)-message, it
starts a new round, by sending out another (query)-
message to all processes. Since we aim at (n− 1)-set
agreement with f = n− 1 here, processes hence start
their new round after receiving just 1 response. In the
case where all other processes crash, the remaining
process will end up receiving only messages sent by
itself.

Definition 3 (Anti-Source): Let p be a correct or
faulty process. Process p is an anti-source, if, when-
ever p sends a query to all processes, then the response

from some other (possibly changing) process arrives
at p before process p starts a new round.
Intuitively speaking, an anti-source is an (unknown)
process whose round-trips with itself are never the
fastest. Note that this definition also implies that the
anti-source can never be the last remaining correct
process.

Definition 4: Let α be a run of a distributed algo-
rithm. Then, α is admissible inManti if the following
holds:

1) Run α is admissible in Masync.
2) At least one process is an anti-source in α.
Algorithm 1 provides an implementation of the

loneliness failure detector L in Manti: A process sets
its outputL to TRUE if and only if it receives its own
reply to its round-trip first. In every run, the anti-
source p will always receive the reply message from
some other process first and therefore never changes
its variable outputL to TRUE.

Lemma 1: Let p be an anti-source in a run of
Algorithm 1. Then, p never sets outputL to TRUE.

Proof: At the start of every round, process p sends
a (query)-message to all other processes. By the def-
inition of an anti-source, p always receives a (resp)-
message to its query from some process q 6= p as its
first reply. Process p will therefore pass the test in
Line 9 and set alone← FALSE. It follows that p will
always pass the test in Line 12 and therefore outputL
remains on FALSE forever.

Theorem 2: L is implementable in Manti.
Proof: Property (1) follows immediately from

Lemma 1. We therefore only need to prove (2).
Suppose that q is the only correct process in α. Then
there is a time after which q does not receive any
more messages from other processes. That is, there is
a time t such that whenever q sends out a (query)-
message, it only receives its own response, hence, it
never sets alone← FALSE at any time t′ > t. The one
(resp) message that q receives, however, is sufficient
to subsequently cause q to set outputL to TRUE in
Line 15.

B. The Model Msink

The modelMsink is similar to the weak-timely link
(WTL) models [6]–[8], [33], which are derived from
the classic partially synchronous models [5], [34].
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Algorithm 1: L in Model Manti

1: Vars:
2: counter ∈ N
3: outputL, alone ∈ {TRUE, FALSE}
4: Initially:
5: outputL ← FALSE;
6: startRound()

7: upon receive (resp) from processes Q do
8: counter ← |Q|
9: if {p} 6= Q then
10: alone← FALSE
11: if counter > n− f then
12: if alone = FALSE then
13: startRound()
14: else
15: outputL ← TRUE

16: upon receive (query) from process q do
17: send (resp) do q

18: procedure startRound()
19: alone← TRUE
20: counter ← 0
21: send (query) to all

Algorithm 2: L in Model Msink

1: Vars:
2: outputL ∈ {TRUE, FALSE}
3: phase, maxSeen ∈ Z
4: Initially:
5: outputL ← FALSE
6: phase← −1
7: maxSeen← −1
8: startPhase()

9: every η steps do:
10: startPhase()

11: upon receive (alive, phase′) do
12: maxSeen← max(maxSeen, phase′)
13: upon expiration of timer do
14: if maxSeen > phase then
15: timer ← Φη + ∆
16: start timer
17: else
18: outputL ← TRUE

19: procedure startPhase()
20: phase← phase + 1
21: send (alive, phase) to all remote processes

Essentially, the WTL models assume that processes
are partially synchronous [5] while trying to minimize
the synchrony requirements on communication delays.

In the model Manti, there is no time bound on
the duration of a round-trip as only the arrival order
matters. Our second model Msink enforces a simi-
lar order by means of explicit communication delay
bounds and message timeouts, like the WTL models.
A naı̈ve approach would be to simply assume a bound
on the round trip time, which is essentially equivalent
to requiring a moving bi-directional link from one
process. Note that this assumption would make one
process permanently 1-accessible (in the notation of
[8]), which turned out to be unnecessarily strong for
our purposes.

As in [5], we assume two bounds Φ and ∆, where
Φ bounds the relative speed of processes, whereas ∆
bounds the transmission delay of a timely message m,
measured in the number of steps of processes during
the transmission of m. We also assume that processes
can only either send messages or receive a possibly
empty set of messages in a step. We say that a message
m is delivered timely over the link (p, q) iff it is sent

by p at time t and received by q not after the first
reception step q takes at or after t+∆. Note that this
definition implies that all messages sent to a crashed
process (or a process that crashes before taking the
decisive reception step) are considered to be delivered
timely.

As in the WTL models (and in contrast to [5]), we
do not assume ∆ to hold for all messages. Rather,
we base our synchrony conditions on a “sink”, i.e.,
a process q that can always receive some messages
timely.

Definition 5 (Sink): A process q is a sink in a run
α if there is a correct process p such any message sent
to q (before it may possibly crash) is delivered timely
to q.

Note that we only consider p to be correct here
to keep the definition simple. Indeed, when the sink
q crashes, then p may crash as well, as long as it
does so only after q. Note that this is actually the
decisive difference between q being a sink and p being
a perpetual 1-source (in the notation of [6]). This is
not the end of the road, however, as this synchrony
requirement can be further weakened when one con-
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siders algorithms with a “round like” structure — that
is, algorithms where each process repeatedly sends
messages to all other processes, as it is often the case
for heartbeat-based failure detector implementations.
For such algorithms, one could also use the following
Definition 6, where the timely process p may change.
Note, however, that in contrast to the timely f -source
model with moving timely links [33], we cannot rely
on single (send-)event as a common reference point
here.

Definition 6 (Sink’): A process q is a sink in a run
α if, for every i > 1, there is a (possibly changing)
process p such that the i-th message sent by p to q is
delivered timely to q.
Note carefully that, since all messages sent to crashed
processes are by definition delivered timely, a sink can
also be a faulty process.

Definition 7 (Model Msink): Let α be a run of a
distributed algorithm. Then, α is admissible in Msink

if the following holds:
1) Run α is admissible in Masync.
2) There is a bound Φ, such that in every interval

of Φ ticks on T every process that is alive
throughout the interval takes at least one step.

3) At least one process is a sink in α.
At a first glance, it might be surprising that model

Msink is a non-eventual model, i.e., a model where
all model properties must hold at all times. This is
necessary in order to implement L (see Definition 1),
which is a non-eventual failure detector. In fact, this
is no peculiarity of set agreement: The weakest failure
detector for n−1 resilient consensus is 〈Σ,Ω〉, which
is also non-eventual (see [35]).

Moreover, the definition of L makes it necessary
that at least one process never falsely suspects “lone-
liness”, i.e., the model parameters Φ and ∆ must be
known (and hold right from the start). While it would
be sufficient if only the sink knew the real model
parameters Φ and ∆, we do not assume that the sink is
known in advance, so all processes must in fact know
Φ and ∆. However, if the messages sent by some fixed
process p to the sink q were always timely, it would
be sufficient if just p and q respected Φ and ∆.

Algorithm 2 shows a simple protocol that imple-
ments L in model Msink: Variable outputL con-
tains the simulated failure detector output. Every pro-

cess p periodically sends out (alive, phase)-messages
that carry the current phase-counter phase. In ad-
dition, it sets a timer that is implemented using
simple step counting. If p does not receive a timely
(alive, phase′)-message that was sent by some other
process in the current (or a future) phase, it sets
outputL ← TRUE in Line 18. Note that the timer is
not re-armed in this case; the algorithm continues to
send (alive, phase)-messages to the other processes,
however. It is important to observe that Algorithm 2
also works in anonymous systems, where processes
do not have unique identifiers but can only distinguish
their neighbors via local port numbers, cp. [36], [37].
In Section IV, we will also provide an anonymous
algorithm that solves set agreement with L.

The following lemma shows that the emulated L at
a sink never outputs TRUE:

Lemma 3: If process q is a sink, then q never
executes Line 18 of Algorithm 2.

Proof: We must show that q receives the (alive, k)-
message from some process before its timer runs out
the (k+1)-st time, for any k > 0. Since q is a sink, the
(alive, k) is delivered timely to q from some process
p. Let T (ψ) denote the time on our global clock T
when event ψ takes place somewhere in the system.
Suppose that p sends the (alive, k)-message in some
step ψp. By the code of the algorithm, process p must
have executed kη steps.3 Since processes are partially
synchronous, we have T (ψp) 6 Φkη. Now suppose
that q’s timer expires in step ψq for the (k + 1)-st
time. That is, q has made (k + 1)(Φη + ∆) steps by
ψq. Obviously, we have T (ψq) > (k + 1)(Φη + ∆).
Considering that the message from p to q is delivered
timely, we are done if we can show T (ψp) + ∆ 6
T (ψq). We find ∀k > 0: T (ψp) + ∆ 6 kΦη + ∆ <
(k + 1)Φη + ∆ 6 (k + 1)(Φη + ∆) 6 T (ψq), which
completes the proof.

Theorem 4: Algorithm 2 implements failure de-
tector L in model Msink for f = n− 1.

Proof: Let α be a run of Algorithm 2 inMsink, and
p be any sink. Lemma 3 implies that p perpetually
outputs FALSE in α (until it crashes), so (1) holds.

For proving (2), suppose that n−1 processes crash
in α. Since there must be some process from which p

3For simplicity, we assume that all processes initially start up
at the same time.
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receives timely messages, p cannot be the only correct
process in α. Let q 6= p be the only correct process
in α. Since q only sends its alive-messages to remote
processes and no other process is alive, q’s timer will
eventually expire without receiving any message, i.e.,
q will set outputL ← TRUE in Line 18.

C. Comparing Msink to an f -Source Model

It is interesting to compare Msink to the f -source
model S→f∗ of [33], which is strong enough to solve
consensus by implementing Ω for f < n/2. Just like
Msink, model S→f∗ assumes that processes are partially
synchronous and that processes can send a message to
multiple receivers in a single step. Moreover, in every
run that is admissible in S→f∗, there is some correct
process p that is an eventual moving-f -source, i.e.,
p has at least f outgoing timely links, i.e., messages
are delivered timely, to a (possibly changing) set of f
processes.

Since we consider a perpetual model Msink, with
failure patterns where up to n−1 processes can crash,
we will compare it to a perpetual model S→n−1∗ that
contains at least one perpetual moving-(n−1)-source
p. Clearly, since n− 1 are all remote processes, there
is no point in assuming that these links are moving
here. Since every process q 6= p receives all messages
from p timely, every such q is a sink. Hence, it is
not difficult to show thatMsink has weaker synchrony
requirements than S→n−1∗:

Theorem 5: Any run α that is admissible in the
(perpetual) model S→n−1∗ is admissible in Msink, but
there are runs admissible inMsink that are not admis-
sible in S→n−1∗.

Proof-Sketch: The first part of the theorem follows
directly by the previous discussion. To see that there
are runs that are only admissible in Msink but not
in S→n−1∗, consider for example the run α where the
sink is initially dead. As there are no other synchrony
requirements on any remaining messages in α, the
existence of a timely (n−1)-source is not guaranteed.

In S→f∗, links are assumed to be reliable as inMsink,
but it is argued in [33] that this assumption is unnec-
essary. In some other work [6], [8] on weak system
models for implementing Ω, links can be unreliable.
This leads us to the question of whether we could

drop the reliable links assumption for our models as
well. We can answer this question in the affirmative:
If we are only interested in implementing L inMsink,
it suffices that all messages sent over a timely link
arrive; all other links may be totally unreliable. If we
also wanted to solve (non-uniform) set-agreement on
top of L, however, links would need to be at least fair
lossy.4 Note that there is a problem when considering
our definition of set-agreement as it requires uniform
agreement: For uniform problems, [38] shows that
reliable links are necessary when more than half of the
processes might crash, which is the interesting case
for set agreement. In contrast, when implementing Ω
and consensus atop of Ω, n > 2f is required anyway,
and therefore one can use the reliable link simulation
of [38], which works for n > 2f and fair lossy links.
However, when reverting to non-uniform (correct-
restricted/failure-insensitive [39], [40]) set agreement,
i.e., set agreement that requires the set agreement
property to hold for correct processes only, we could
assume fair lossy links as well.

D. Consensus Impossibility

Given these similarities (cf. Theorem 5) with a
model where consensus is solvable, the question of
whether our models are also strong enough to solve
consensus arises naturally. We now show that this
question can be answered in the negative. Due to
the fact that our models are very close to the asyn-
chronous model, the proof is surprisingly simple.

Theorem 6: Consider a message passing system of
size n > 3, where up to n − 1 processes may crash.
There is no algorithm that solves consensus in model
Manti or in model Msink.

Proof: Suppose, for a contradiction, that there is an
algorithm Asink (resp. Aanti) that solves consensus in
model Msink (resp. Manti).
Msink: Consider a run α of Asink where some process
p is initially dead. Since p satisfies the definition of
a sink, there are no other synchrony requirements on
the links connecting the remaining correct processes.

4Alternatively, using our Algorithm 3 it suffices when one link
is (perpetually) reliable and timely, and all others drop all mes-
sages. By abandoning failure detectors and merging Algorithms 2
and 3, the exact number of messages for which the link has to be
timely could be determined.
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Algorithm 3: Solving k-set agreement with L(k)

1: x← v
2: rnd← 0
3: initially send (round, 0, x) to remote processes

4: in any later step:
5: if L(k) = TRUE then
6: send (dec, x) to all
7: decide x
8: halt
9: if received (dec, y) then
10: send (dec, y) to all
11: decide y
12: halt
13: if received (round, rnd, y) from n−k remote processes then
14: S ← {y1, . . . , yn−k} ∪ {x}
15: x← min(S)
16: if rnd = k + 1 then
17: send (dec, x) to all
18: decide x
19: halt
20: rnd← rnd + 1
21: send (round, r, x) to all remote processes

Hence the set of the runs where p is initially dead
is indistinguishable from the set of runs generated by
Asink in a systemMasync with just n−1 > 2 processes,
where processes are partially synchronous, all links
are asynchronous, and f = n − 2 > 1 processes can
still crash. This contradicts the impossibility results in
[34, Table 1].
Manti: Consider a run α of Aanti, where some process
p is initially dead. Since p satisfies the definition of an
anti-source, there are no other synchrony requirements
at all in Manti. Therefore, the set of these runs where
p is initially dead is indistinguishable from the set
of runs generated by Aanti in a system Masync with
n − 1 > 2 processes, where still f = n − 2 > 1
processes can crash. This, however, contradicts the
FLP impossibility [2].

IV. SOLVING k-SET AGREEMENT WITH L(k)

In this section, we present an algorithm that solves
k-set agreement with the L(k) failure detector in-
troduced in Definition 1. The original algorithm for
solving (n − 1)-set agreement with L [19] requires
a total order on process identifiers. Algorithm 3, in
contrast, also works in anonymous systems.

We denote by Xr the possibly empty array contain-
ing all x-values after the assignment in line 15 while
the round variable rnd was set to r. We assume that
Xr is ordered by decreasing values, i.e., Xr[1] is the
maximal value, if it exists. Furthermore, we denote
the number of nonempty entries in Xr by |Xr|.

Lemma 7: For any round r > 0, the number of
unique values in Xr is ur 6 k − ar, where ar is the
number of processes which never sent (round, r, x).

Proof: First, we observe that x is updated by a
process p only after receiving n − k (round, r, y)
messages from other processes.

Let p be the process which assigns the largest value
in line 15. Since any process p sets x to the minimum
of the n − k round r values received, there must be
n − k − 1 messages containing values y > x among
those received by p.

Considering that |Xr| 6 n−ar, it follows that only
n− ar − (n− k + 1) 6 k − ar − 1 values in Xr can
be smaller than p’s minimum. Thus, processes assign
at most k− ar different values to x and subsequently
send them as (round, r + 1, x)-messages.

Lemma 8: Processes do not decide on more than
k different values.

Proof: Regarding the number of different decision
values, processes deciding due to receiving a (dec, y)
message (line 11) make no difference, since some
other process must have decided on y using another
method before. Thus we can ignore this case here.

What remains are decisions due to L(k) being
TRUE (line 7) and due to having received n − k
messages in round k + 1 (line 18). For each r > 0,
we denote by `r the number of processes which have
decided due to their failure detector output being
TRUE while their rnd = r. Thus the number of
processes that have decided in line 7 with rnd 6 r for
some r > 0 is Σr

s=0`s. In the following we use Σr as
an abbreviation for this sum. Since processes halt after
deciding, we can deduce that the number of processes
which do not send round r messages ar, is at least
Σr−1. Thus, Lemma 7 tells us that ur 6 k − Σr−1.

Now we assume by contradiction, that there are
actually D > k decisions, with D = uk+1+Σk+1, that
is the number of different values decided on in line 18
plus those that decided based on L(k). Thus we get
uk+1 > k−Σk+1, and by using the above property of
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ur, we deduce that Σk+1 > Σk, and thus `k+1 > 1.
These processes must have decided on some values
in Xk, however, which leads to the realisation that
D = uk + Σk. We can repeat this argument until we
reach D = u1 + Σ0 = u1 + `0. Here, Lemma 7 gives
us the trivial upper bound u1 6 k, which entails the
requirement `0 > 1 as D > k.

By now, we have shown that, assuming D > k
decisions `r > 1 is required for r ∈ {0, . . . , k + 1}.
In other words we have deduced that Σk+1 > k +
1 processes have decided due to their L(k) output
being TRUE. This contradicts property (2) of L(k),
thus proofing the Lemma.

Theorem 9: Algorithm 3 solves k-set agreement
in the anonymous asynchronous system augmented
with L(k).

Proof: Validity is evident, since no value other than
the initial values v of processes are ever assigned
directly or indirectly to x. k-Agreement follows from
Lemma 8, and since either n − k processes send
messages in each round or some process has L(k) =
TRUE, every correct process terminates.

From [19], we know that L can be extracted anony-
mously from any failure detector D which solves set-
agreement using some algorithm A: Every process
executes an independent instance of A using D as
failure detector. The simulated L outputs TRUE at p
only after A has terminated at p. In conjunction with
Theorem 9, this implies the following fact:

Corollary 10: L is the weakest failure detector
for set agreement in anonymous message passing
systems.

Theorem 9 showed that L(k) is sufficient for k-
set agreement. We now prove that it is not (much)
stronger than necessary, as L(k) is too weak to solve
(k − 1)-set agreement.

Theorem 11: No algorithm can solve (k − 1)-set
agreement with L(k), for any 2 6 k 6 n− 1.

Proof: We assume by contradiction that such an
algorithm A exists. Now consider the failure detec-
tor history where processes p1, . . . , pk output TRUE

perpetually, while the other processes output FALSE.
Clearly, this defines a legal history for L(k) in a run
where the n−k processes pk+1, . . . , pn crash initially.
For the remaining k processes, the failure detector
provides no (further) information about failures, as it

outputs TRUE perpetually. Since A is able to solve
(k−1)-set agreement in any such run by assumption,
it can also be used to solve (k−1)-set agreement in an
asynchronous system of k processes, equipped with a
dummy failure detector [41] that always outputs TRUE.
Clearly, this contradicts the (n − 1)-set agreement
impossibility in a system of n processes [24], [25],
[42].

V. RELATION OF L(k) TO Sn−k+1 AND Σ

In this section, we discuss how the L(k) failure
detector relates to the limited accuracy failure detector
Sn−k+1 (see Definition 2). Theorem 15 shows that,
except in the canonical cases k = 1 and k = n − 1,
these failure detectors are incomparable. The proof
consists of the following series of technical lemmas:

Lemma 12: L(1) is stronger than Sn = S.
Proof: In order to show that L(1) is stronger

than Sn, we show that we can implement Sn with
L(1). For S, we have to find one correct process
which is never suspected by anyone (weak accuracy),
while eventually every faulty process is suspected
(strong completeness). As L(1) must output TRUE

at one correct process only if at least one process
has crashed, the idea of the transformation is quite
simple: A process always outputs the empty set as
its suspicion list, unless (1) it is instructed otherwise
by another process, or (2) its L(1) outputs TRUE.
Since n−1 processes must output FALSE, case (2) can
only occur at a single process p, which then sends a
message to all other processes telling them to suspect
everyone but p.

Strong completeness follows, because if one (or
more) processes crash, L(1) will eventually output
TRUE at some correct p, causing all faulty processes
to be suspected (along with all correct processes apart
from p) by all other processes. Weak accuracy follows
from p never being suspected.

Next we consider the general case, i.e., k > 1.
Here we show that, except in case k = 1, no L(k) is
stronger than even the weakest (non-trivial) instance
of Sx, namely S2.

Lemma 13: L(k) is not stronger than S2, for all
k > 1.

Proof: Assume a transformation T exists, which
implements S2 based on L(k). Now consider a run
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α where only p crashes initially, i.e., |F | = 1. Since
|F | 6 1 < k, L(k) can perpetually output FALSE at all
processes in α. By the strong completeness property
of S2, transformation T must ensure that there is some
time t such that all processes suspect p.

Now consider a different run α′ where all messages
from p to other processes are delayed until t′ > t.
Moreover, assume that all processes except p crash
at some time t′′ > t′ in α′ and consider the failure
detector history H where L(k) outputs TRUE at p,
and FALSE at all processes q 6= p. Clearly H is a
valid history for α′ and p has to be in the output
suspect-list of all processes q 6= p by time t, as
α′ is indistinguishable until t′ from α. But since in
α′ all processes except p crash at time t′′, p is the
only correct process, but was suspected by all other
processes, contradicting 2-weak accuracy (3).

Lemma 14: Sn−k+1 is not stronger than L(k), for
k < n− 1.

Proof: We again assume by contradiction that a
suitable transformation algorithm T exists, which
builds L(k) from Sn−k+1. Let αi be a run where all
processes except pi crash initially. Then, as pi is the
only remaining correct process, it must eventually set
outputL(k) to TRUE at some time ti. By applying this
construction to a set S = {p1, . . . , pk−1} of processes,
we get a time t = max(t1, . . . , tk−1), when every pi

has set outputL(k) to TRUE in the respective αi.
Now consider a run α where every process in a

set S = {p1, . . . , pk−1} suspects every other process,
that is ∀pi ∈ S : H(pi, t) = Π \ {pi}, and process pk

never suspects anybody. Moreover, the delivery of all
messages from other processes to any process in S is
delayed until time t.

Then, for any process pi ∈ S, the run α is indis-
tinguishable from the run αi where only pi is alive
and so all k−1 processes in S have set outputL(k) to
TRUE by time t in α. Note that this does not violate the
(n− k+ 1)-weak accuracy of Sn−k+1. Now suppose
that all processes in S crash at some time t′ > t, and
also assume that pk initially crashes.

Since k processes crash in α, it follows by the
fact that T implements L(k) that at least one of
the remaining processes pk+1, pk+2, . . . , pn has to set
outputL(k) to TRUE eventually; w.l.o.g. let pk+1 be
that process and tk+1 be the time when it does so.

Since n > k + 2, we can assume that pk+1 crashes
after tk+1 as well, and repeat the argument for process
pk+2. But now, k + 1 processes have set their output
variable outputL(k) to TRUE, which contradicts the
requirement (2) of L(k).

From Lemma 12 and 14 it follows that Sn is strictly
weaker than L(1). Moreover, Lemma 13 and the result
that L = L(n− 1) is the weakest failure detector for
set agreement [19] implies that S2 is strictly stronger
than L(n−1). For the remaining choices of k, we get
that Sn−k+1 and L(k) are not comparable by Lemma
14 and 13, which completes the proof of Theorem 15.

Theorem 15: Failure detector Sn is strictly weaker
than L(1), and S2 is strictly stronger than failure
detector L(n − 1). For 1 < k < n − 1, L(1) and
Sn−k+1 are incomparable.

Recalling the result of [43], this immediately im-
plies:

Corollary 16: Neither L(k) nor Sn−k+1 is the
weakest failure detector for general message passing
k-set agreement.

Despite Corollary 16, however, L(k) appears to be
a promising candidate for the weakest failure detector
for message passing k-set agreement in anonymous
systems, i.e., without unique process ids.

As a final relation, we now explore the relation
between L(k) and Σ. The general case for L(k) can be
deduced from the more specific result of [19, Lemma
4] by finding and investigating a suitable partitioning.

Lemma 17: L(k) is not stronger than Σ, if n > 2
and k > 2.

Proof: Assume that there exists an algorithm A that
transforms L into Σ. Consider the partitioning of Π
given by P = {{p1}, {p2}, P3}. Since n− 1 > k > 2
this is a valid partitioning. Moreover, assume two runs
r1 and r2 such that process pi is correct in run ri
and all other processes are faulty from the beginning.
Moreover, the output of L(k) at process pi is TRUE

from the beginning as well. Since A must guarantee
completeness for Σ, it eventually has to output {pi} in
run ri say at time ti. Now imagine a run r in which the
processes p1 and p2 are correct and the output of L is
TRUE from the beginning. Additionally, no message of
a process from a different partition is received by these
two processes before time t = max{t1, t2}. Then,
runs r1 and r2 are indistinguishable from run r before
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time t. Therefore, the output of Σ at pi at time ti
will be the same as in ri. But this contradicts the
intersection property of Σ. So there exists no such
algorithm A.

Moreover, Theorem 17 implies that either L(k) is
strictly weaker than Σ or the two are not comparable.
In either case, when adding another failure detector
to Σ, say anti-Ωk, the combined failure detector is
stronger than Σ, so the same applies to it. Conse-
quently:

Corollary 18: 〈Σ, anti-Ωk〉 is not the weakest fail-
ure detector for solving k-set agreement in message
passing systems.

VI. CONCLUSIONS

We introduced two novel message passing models
that provide just enough synchrony for set agreement
but not enough for consensus. We also showed how
to implement the weakest loneliness failure detector L
for set agreement in these models, and proved that L
is also the weakest failure detector for set agreement
in anonymous systems. Finally, we generalized L to
the (n − k)-loneliness failure detector L(k), which
allows to solve k-set agreement but not (k − 1)-
set agreement. Part of our future research will be
devoted to the relationship between (anonymous and
non-anonymous) failure detectors and the synchrony
conditions necessary for implementing them. One
direction is the question of whether our models can be
generalized for k-set agreement. Tightly connected to
this question is the still ongoing search for the weakest
failure detector for message passing k-set agreement.
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