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Abstract. We consider how to edit strings from a source language so
that the edited strings belong to a target language, where the languages
are given as deterministic finite automata. Non-streaming (or offline)
transducers perform edits given the whole source string. We show that
the class of deterministic one-pass transducers with registers along with
increment and min operation suffices for computing optimal edit dis-
tance, whereas the same class of transducers without the min operation
is not sufficient. Streaming (or online) transducers perform edits as the
letters of the source string are received. We present a polynomial time
algorithm for the partial-repair problem that given a bound α asks for
the construction of a deterministic streaming transducer (if one exists)
that ensures that the ‘maximum fraction’ η of the strings of the source
language are edited, within cost α, to the target language.
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1 Introduction

One of the classic problems in language theory concerns optimally editing an
input string so that it belongs to a given target regular language [3].

Definition 1 (Edit-distance). An edit operation applied to a string u either
deletes a single character, inserts a single character, or changes a single char-
acter. The edit-distance between u, v ∈ Σ∗, denoted ed(u, v), is defined as the
length of a shortest sequence of edit operations that applied to u yields v. For
language T , we define ed(u, T ) := infv∈T ed(u, v).

In [2] the problem was generalized: given source language R and target lan-
guage T , how to edit strings from R so that the edited strings belong to T .

? The research was supported by Austrian Science Fund (FWF) Grant No P 23499-
N23, FWF NFN Grant No S11407-N23 (RiSE), ERC Start grant (279307: Graph
Games), and Microsoft faculty fellows award. Thanks to Gabriele Puppis for sug-
gesting the problem of identifying a deterministic transducer to compute the optimal
cost, and to Martin Chmelik for his comments on the introduction.
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There are two broad categories of transducers Tr that edit strings depending
on how they process input. The non-streaming (or offline) transducers reads the
complete source string u ∈ R and then output the repaired string Tr(u) ∈ T .
The streaming (or online) transducers perform the edits as the letters of input
u are received. For a class of transducers, the main interest is to compare u 7→
ed(u,Tr(u)) — ie. the cost of editing using Tr from the class — to u 7→ ed(u, T ),
the cost of optimal editing.

Previous results for non-streaming transducers: Wagner [3] gives a polynomial
time algorithm for computing the optimal edit-distance, namely u 7→ ed(u, T ),
given a DFA for T . In [2] it was shown (Section III.A) that certain (non-
deterministic) distance automata can compute this optimal cost.

Our contributions for non-streaming transducers: We consider the problem
of finding a natural class of deterministic transducer for computing the opti-
mal edit-distance u 7→ ed(u, T ). We observe that Wagner’s algorithm can be
reformulated using cost-register automata of [1]. Specifically, one can use the de-
terministic one-pass transducers with registers that allow parallel updates using
the increment and arbitrary-arity minimum operations. We prove that natural
restrictions of this model, notably by disallowing use of the minimum operator,
do not suffice to compute the optimal edit-distance (Theorem 5). This uses some
pumping-like arguments.

Previous results for streaming transducers: In [2] it was also shown that
whether there is a streaming transducer (Definition 7) with finite streaming-cost
(Definition 8) that repairs strings from R to strings in T is a PTIME-complete
problem (the languages R, T are given as DFAs). Moreover, if the cost is finite,
then a streaming transducer can be extracted from their proof [2][Theorem 3].

Our contributions for streaming transducers: We consider the problem of re-
pairing strings from source to target language in the case that the streaming-cost
is infinite or very large. In this case we fix an edit-distance bound α and ask what
is the ‘largest fraction’ of strings η ∈ [0, 1] that can be repaired within cost α
by a streaming transducer. This is called the partial-repair problem. We show
with an example (Example 12) that although the streaming-cost is infinite, a
large fraction (formalised in Definition 11) of the strings from the source lan-
guage may be edited with small edit distance to belong to the target language.
Our main contribution (Theorem 14) is a polynomial time algorithm solving the
partial-repair problem, and, if one exists, a construction of a corresponding de-
terministic streaming transducer. We do this by building and solving a Markov
decision process whose value is the largest such η.

2 Non-streaming Transducers

Following Wagner [3], there is a dynamic programming algorithm that given
a string u ∈ Σ∗ and a DFA for target language T ⊂ Σ∗ can compute, in
PTIME, the integer cost(u, T ) (and a string t ∈ T with the property that
cost(u, T ) = ed(u, t)). In [2][Section III] it is mentioned that this gives a trans-
ducer of fairly low complexity. We formalise this intuition and observe that
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there is a deterministic transducer model that implements Wagner’s approach
and computes u 7→ ed(u, T ). In fact, the transducers are certain cost register au-
tomata (introduced in [1]), which we call repair-transducers. A repair-transducer
is a DFA with a fixed number of register names K. Write intk for the value, a
natural number, of register k ∈ K. Initially each register contains 0. At each
step the DFA reads the next letter from the input string, updates its local state,
and makes a parallel update to the registers. The allowed updates may mention
the register names, the constant 0, addition by a constant, and the minimum of
any number of terms.1 Once the input string has been read the machine outputs
the contents of some of its registers. Thus a repair-transducer realises a function
Σ∗ → Nk. Formally, an update is a term generated by the grammar:

inc-min ::= 0 | int_k (for k∈K) | inc-min + c (for c∈ N)
inc-min ::= min(inc-min, inc-min,...,inc-min)

If ν : K → N and τ is an inc-min term, write [[τ ]]ν for the evaluation of term
τ under assignment ν.2

Definition 2. A repair-transducer Tr is a DFA (Σ,Q, q0, δ) without final states
augmented by a finite set K of register names, a register update function µ :
Q × Σ × K → IMT , and a final register function f : Q → K, where IMT
is the set of inc − min terms. A configuration is an element of Q × NK . The
initial configuration is (q0, ν0) where ν0(k) = 0 for all k ∈ K. The run on input
u = u1 · · ·un ∈ Σ∗ is the sequence of configurations (q0, ν0) · · · (qn, νn) such that
qi+1 = δ(qi, ui) (for 0 ≤ i < n) and for each k ∈ K, νi+1(k) := [[µ(qi, ui, k))]]νi .
The transducer outputs Tr(u) := νn(f(qn)).

Proposition 3. For regular language T there is a repair-transducer Tr comput-
ing u 7→ cost(u, T ). Moreover, given a DFA for T one can build Tr in PTIME.

For the proof simply note that the dynamic-programming identities in Wag-
ner’s algorithm only use the +c and min operations. Clearly if we disallow use of
+c operation then the transducer can’t accumulate values and so can’t compute
u 7→ ed(u, T ). What if we disallow the min operation?

Proposition 4. There is a language T such that every repair-transducer for T
requires the use of min in its update rules.

Proof. Let T = 0∗ + 1∗. Suppose there were a repair transducer Tr for T with
state set Q, register set K, but no use of the min operation. Let δ : Q×Σ∗ → Q
be the transition function (extended to strings) and M : Q×Σ∗×NK → NK the
evaluated update function extended to strings. That is: the run of Tr starting
from (q, ν) on input u ∈ {0, 1}∗ ends in (δ(q, u),M(q, u, ν)). Note that Tr(w) is
the minimum of the number of 0s in w and the number of 1s in w.

1 This is similar to the inc-min grammar of [1]. However there they only allow a binary
min operation.

2 Namely, [[0]]ν := 0, [[intk]ν := ν(k), [[τ + c]] := [[τ ]] + c, and [[min(τ1, · · · , τn)]] :=
min{[[τ1]], · · · , [[τn]]}.
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Fact 1. For every (q, u) there are functions Fq,u : K → K and #Fq,u : K → N
such that for all ν, k,

M(q, u, ν)(k) = ν(Fq,u(k)) + #Fq,u(k), (1)

in words: the kth component of M(q, u, ν) is equal to the Fq,u(k)th component
of ν plus integer #Fq,u(k). This can be proved by induction on |u| and uses the
fact that Tr only has +c updates.

Fact 2. For every Fq,u : K → K there exists N,P ∈ N such that for all
y ∈ N, (Fq,u)N = (Fq,u)N+Py. This follows from the fact that the set of functions
K → K is a finite set closed under composition so apply the pigeonhole principle.

Fact 3. Fix u, q such that δ(q, u) = q, and N,P from Fact 1 applied to Fq,u.
For every k ∈ K there exists j ∈ K and α, β ∈ N such that for all ν ∈ NK and
y ∈ N, M(q, uN+Py, ν)(k) = β + yα + ν(j). For the proof use: β := #Fq,uN (k),
j := FNq,u(k), and α := #Fq,uP (j).

We now apply some pumping arguments. Note that in the lemma if α = 0
then pumping doesn’t increase the value. In this case call the triple (u, q, k) flat.
On the other hand if α > 0 then pumping increases the value. In this case call
the triple (u, q, k) increasing. We exploit this dichotomy.

By the pigeonhole principle there exists q0 ∈ Q and c, d ∈ N such that
δ(ι, 0a) = q0, δ(q0, 0

b) = q0. Thus δ(ι, 0a+bx) = q0 for all x ∈ N. Similarly,
there exists q1 ∈ Q, c, d ∈ N such that δ(q0, 1

c) = q1, δ(q1, 1
d) = q1. Thus

δ(q1, 0
c+dy) = q1 for all y ∈ N. Write wx,y := 0a+bx1c+dy. Note that Tr(wx,y) =

min{a+ bx, c+ dy}. Let k := f(q1) be the register whose value is output when
given strings of the form wx,y.

Suppose x is much bigger than y (technically: a + bx > c + d(y + 1)). Then
after reading input wx,y register k has value c + dy. And after reading input
wx,y+1 register k has value c+ d(y+ 1). This implies that the triple (1d, q1, k) is
increasing. On the other hand, suppose x is smaller than y. Then after reading
input wx,y register k has value a+ bx. And after reading input wx,y+1 register k
has value a + bx. This implies that the triple (1d, q1, k) is flat. But a triple can
not be both increasing and flat. ut

We summarise the results of this section:

Theorem 5. For every regular language T ⊂ Σ∗ there is a repair-transducer Tr
computing cost : Σ∗ → N, u 7→ cost(u, T ). Moreover, the models of transducer
which disallow the +c operators or the min operator cannot, in general, compute
this cost.

3 Streaming Transducers

Here is the generalisation of edit-distance to a source and target language:

Definition 6 (Repair-cost). [2] Given two languages R, T ⊂ Σ∗ define the
repair-cost from R to T as cost(R T ) := supu∈R infv∈T ed(u, v).
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Note the asymmetry in the definition of repair cost: it expresses the worst-
case cost of repairing all strings in R to strings in T . The cost may be finite
cost((ab)∗  (ba)∗) = 2 — just delete the first and last letter of the input —
or infinite cost(a∗  (ba)∗) =∞ — since ed(a2n, (ba)∗) = n.

Definition 7 (Streaming Transducer). A streaming transducer is a device
of the form Tr = (Σ,Σout, Q, δ, q0, Ω), where

– Σ is a finite input alphabet, and Σout is a finite output alphabet,
– Q is a finite set of states and q0 ∈ Q is an initial state,
– δ is a transition function Q×Σ → Σ∗out ×Q, and
– Ω is a final-output function Q→ Σ∗out.

For every string u = a1 . . . an in Σ∗, there is a unique sequence of states
q0, q1, · · · , qn and strings v1, · · · , vn such that δ(qi, ai+1) = (vi+1, qi+1) for all
0 ≤ i < n. In this case define the output of Tr on u to be the string Tr(u) =

v1v2 . . . vnvn+1 where vn+1 = Ω(qn). We write q0
a1/v1−−−→ q1

a2/v2−−−→ · · · an/vn−−−−→
qn

vn+1−−−→.
Define the output of Tr on language R to be the set Tr(R) = {Tr(u) | u ∈ R}.

Definition 8 (Streaming Cost3). [2] For a streaming transducer Tr and an

input string u = a1 . . . an ∈ Σ∗, if the run of u on Tr is q0
a1/v1−−−→ q1

a2/v2−−−→
· · · an/vn−−−−→ qn

vn+1−−−→, then the streaming cost of Tr on u is defined as:

costTr(u) = |vn+1|+
n∑
i=1

ed(ai, vi)

For language R define costTr(R) := supu∈R costTr(u).
If Tr(R) ⊂ T then say that Tr is a streaming transducer from R to T .

Note. ed(u,Tr(u)) ≤ costTr(u) and so cost(R  Tr(R)) ≤ costTr(R).
The streaming-cost is an upper bound on the repair-cost. So if cost(R T ) =
∞ then there is no streaming-transducer from R to T with finite streaming-cost.

Example 9. [2] Let Σ = {a, b, c}, R = (a+b)c∗(a++b+) and T = ac∗a++bc∗b+.
Then for every r ∈ R there is t ∈ T such that ed(r, t) ≤ 1 (correct the first
letter if required). However, for every streaming transducer Tr from R to T ,
costTr(R) =∞. In other words, the cost of repairing all strings in R to strings in
T is finite, but is not realisable by a streaming transducer with finite streaming-
cost.

In the last example consider a streaming transducer Tr that outputs an ’a’
and then copies the rest of the input (ie. it sends (a+b)cnw to acnw). It correctly
repairs strings of the form (a+b)c∗a+ (incurring cost ≤ 1) and incorrectly strings
of the form (a + b)c∗b+; that is, it is a streaming transducer from (a + b)c∗a+

3 In [2] this is called the aggregate cost of Tr on u.
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to T . Then, informally, Tr repairs with cost at most 1 half the strings of R to
T ; and formally Tr is a ( 1

2 , 1)-streaming transducer (Definition 11). To formalise
this we introduce probability measures over infinite strings.

A distribution on finite set A is a function d : A→ [0, 1] with Σa∈Ad(a) = 1.
For instance, d : σ 7→ 1

|A| is a distribution on A, and d′ : σ1 · · ·σn 7→
∏
i d(σi)

is a distribution on An. The distributions over A will be denoted dbn(A). For
u ∈ A∗, let cone(u) ⊂ Aω be the set of infinite strings that have u as a prefix.
There is a unique probability measure µd on the Borel σ-field generated by the
cones4 with the property that the measure of cone(u) is d′(u).

Example 10. Continuing with Example 9, let d and d′ be as above (thus d′(u) :=
3−|u|). The probability (wrt. µd) that every prefix of an infinite string is in (a+
b)c∗a+ conditioned on the infinite string having a prefix in R = (a+b)c∗(a++b+)
is 1

2 .

Definition 11 ((η, α)-streaming transducer). Fix regular languages R, T ,
and a streaming transducer Tr from R to T , and a non-negative integer α. Say
that infinite string u = a0a1a2 . . .

1. is in need of R-repair if there exists n so that a0 . . . an is in R;
2. is 〈R, T 〉-repairable by Tr within α if for all n with a0 . . . an ∈ R the cost

costTr(a0 . . . an) is at most α and Tr(a0 . . . an) ∈ T .

Say that Tr is an (η, α)-streaming transducer (from R to T ) if η is the proba-
bility that u is 〈R, T 〉-repairable by Tr within α conditioned on u being in need of
R-repair. Here probabilities are taken with respect to µd induced by the measure
on cones d′ itself determined by d : w 7→ |Σ|−|w| where Σ is the alphabet of R.
When R and T are fixed we may not mention them.

We give an example where η is close to 1:

Example 12. Let Σ = {a, b, c, d} and Rk := ({a, b}k \ bk)c+ ∪ bkd+ and T =
(a + b)∗c+. Fix k and note that cost(Rk  T ) = ∞ since ed(bkdn, T ) = n
(as T does not accept any string with d in it). However, there exists an (η, α)-
streaming transducer with α = 0 and η = 1 − 1

2k
which operates as follows: it

copies the first k letters and then outputs a ‘c’ for every remaining input letter.
The only strings in Rk which it cannot repair within cost 0 are the ones of the
form bkd+.

Partial-repair Problem. The bounded-repair problem is, given DFAs for R
and T to decide whether or not there exists a streaming transducer Tr from R
to T such that costTr(R) is finite. It is proved in [2] that the bounded repair
problem is PTIME-complete. Moreover, if it exists, a streaming transducer can
be constructed quite easily from their proof.

4 The Borel σ-field is defined as the least collection of subsets of Aω containing the
cones and closed under countable union and complementation. Sets in the σ-field
are called measurable. All our sets in this paper are measurable.
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Question 13. Suppose cost(R T ) =∞, or costTr(R) is∞ or just very large
for every streaming-transducer Tr from R to T . How to transform R to T?

Our proposal is, given R, T and allowed cost α, to construct a streaming trans-
ducer Tr that, roughly, repairs as many strings as possible. Formally this means
solving the partial-repair problem: compute the largest η for which there exists a
(η, α)-streaming transducer from R to T ; and compute the corresponding trans-
ducer. The main theorem of this section states that we can do this in PTIME:

Theorem 14 (partial-repair problem). Given DFAs for R and T , and posi-
tive integer α, given in unary, one can compute, in PTIME, the largest η ∈ [0, 1]
for which there exists an (η, α)-streaming transducer sending R to T .5 Moreover,
we can build an (η, α)-streaming transducer from R to T in PTIME.

The rest of the paper is devoted to a proof of this theorem.

3.1 Tools for Theorem 14

Definition 15 (MC). A Markov chain M is a tuple (Q,∆, ι) where

– Q is a finite set of states,
– ∆ : Q→ dbn(Q) gives the transition probabilities, and
– ι ∈ dbn(Q) is the initial distribution.

The edges E consist of pairs (q, q′) such that ∆(q)(q′) > 0. A path q1q2 · · · of
M is a (finite or infinite) sequence of states such that ι(q1) > 0 and successive
states qi, qi+1 satisfy E.

Write ΩM for the set of infinite paths in M . Form a topology on ΩM by
taking as basis the sets of the form cone(x) where cone(x) consists of all infinite
paths in M that start with the finite path x. Define the probability in M of a
path q1 · · · qn ∈ Q+ as ι(q1)×

∏
1≤i<n∆(qi)(qi+1). Define µM on cone(x) as the

probability in M of path x. Then µM can be uniquely extended to the Borel
σ-field generated by the open sets. Write PrM for the unique probability measure
(over ΩM ) extending µM .

Definition 16 (Labelled MC). A Markov chain M = (Q,∆, ι) is Σ-labelled
if for each q ∈ Q the edges out of q (ie. E(q) := {(q, q′) : E(q, q′)}) are in
bijection with Σ.

Being labelled means that every state q has exactly |Σ| edges, and each edge
goes to a different state.

Example 17 (Uniform MC UΣ). Let U = UΣ have states Σ, transition from σ
to σ′ labelled σ′ with probability 1

|Σ| , initial distribution sends σ to 1
|Σ| . Then

U is a Σ-labelled MC. The probability of u ∈ Σ+ is equal to |Σ|−|u|. Thus the
measure PrU agrees with µd on the cones cone(u). Hence PrU and µd agree on
the measurable subsets of Σω.
5 That is, η is a rational and the algorithm computes a representation for it in PTIME.
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The following lemma is standard:

Lemma 18. There is a PTIME algorithm that given a MC M and a set of
states A computes the probability that a path in M reaches A.

The following definition annotates a MC by the states of a DFA.

Definition 19 (M �mc D). For Σ-labelled Markov chain M and DFA D over
alphabet Σ ×QM define the Σ-labelled Markov chain M �mc D as follows:

– The state set is QM ×QD.
– Suppose there is an edge EM (m,m′) labelled σ. Then there is an edge from

(m, d) to (m′, δD(d, (σ,m′))) with probability ∆(m)(m′) and label σ.
– the initial distribution sends (m, d) to ιM (m) if d is the initial state of D,

and to zero otherwise;

As a degenerate case, in case D has alphabet Σ then write M �mc D to
mean M �mc F where F has the same state set as D, the same initial state, has
alphabet Σ ×QM , and sends, for all m, state q on input (σ,m) to δD(q, σ).

Note. It can be checked that the object defined is indeed aΣ-labelled Markov
chain. We point out that in an edge (m, d) to (m′, d′) labelled σ, the state d′

depends directly on m′ — not m — and σ.
Let M and D be as in the definition. Every path m1m2 · · · of M induces a

unique sequence of labels σ1σ2 · · · such that the edge from (mi,mi+1) is labelled
σi which itself induces a unique sequence d1d2 · · · of states of D satisfying di+1 =
δD(di, (σi,mi+1)) where d1 is the initial state of D. Let

ρ : m1m2 · · · 7→ (m1, d1)(m2, d2) · · ·

be the annotation map. Note that since D is a DFA ρ is a bijection between
paths in M and paths in M �mc D.

Lemma 20. Let M be a Σ-labelled MC, D a DFA over Σ×QM . Then for every
measurable X ⊂ (QM )ω, PrM (X) = PrM�mcD(ρ(X)).

For the proof it is enough to consider X of the form cone(x).

Example 21. Let R be a DFA over Σ with final states FR and U = UΣ the
uniform Markov chain. The lemma says that PrU of the set of paths in need of
R-repair equals the probability in PrU�mcR of the set of paths that reach a state
of the form Σ × FR.

Definition 22. A Markov decision process is a tuple ((V,E), (Vdec, Vrand), µι, µ)
where

– (V,E) is a directed graph, Vdec, Vrand partition V ,
– µ : Vrand → dbn(Vdec) is the edge distribution,
– µι ∈ dbn(Vrand) is the initial distribution,
– for u ∈ Vrand, (u, v) ∈ E iff µ(u)(v) > 0,
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– for v ∈ V , E(v) (the out-going edges from v) is non-empty.

We say that the vertices Vdec belong to the decider, while the vertices Vrand
belong to the randomizer. A play is a path in (V,E).

We think of a labelled MDP just as a labelled MC with the addition that
decider’s edges are labelled by elements from a set Act. Formally:

Definition 23 (Labelled MDP). An MDP is (Σ, Act)-labelled if

– for each v ∈ Vrand the edges from v are in bijection with Σ, and
– for each v ∈ Vdec each edge from v is labelled by an element of Act.

Note (identification) Suppose |E(u)| = 1 for all u ∈ Vdec. Then a (Σ, Act)-
labelled MDP can be naturally viewed as Σ-labelled MC as well as a streaming
transducer with input alphabet Σ and output values taken from Act.6 We call
this identification and write things like “this MDP is the same, modulo the
identification, as that MC”.

Definition 24 (Strategy in an MDP). A strategy σ for the decider is a
function σ: V ∗ · Vdec → V such that for all w ∈ V ∗ and all v ∈ Vdec we have
σ(w · v) ∈ E(v). A memoryless strategy for the decider is independent of the
history and depends only on the current state, and can be described as a function
σ : Vdec → V . A finite-state strategy for the decider is one induced by a DFA
(Q, δ, ι) over input alphabet V and output function θ : V × Q → V as follows:
σ(wv) := θ(v, δ(ι, w)).

As usual, applying a strategy s to an MDP G results in a MC, which we
write G[s].

Definition 25. Let s be a finite-state strategy in G. Write Trs for the streaming
transducer associated with G[s]. Note that Trs has input alphabet Σ and outputs
elements from Act.

We now define a certain interleaving of a MC and an NFA yielding an MDP.
The idea is that the MC determines the allowed moves of the randomizer while
the NFA determines the allowed moves of the decider.

Definition 26 (M �mdp N). Suppose M is a Σ-labelled Markov chain and N
is an NFA over alphabet Σ × Act. Define a (Σ, Act)-labelled MDP M �mdp N
as follows:

– the randomizer’s nodes are QM ×QN ,
– the decider’s nodes are QM ×Σ ×QN ;
– if in M there is an edge from m to m′ with label σ and probability x, then

for all n there is an edge in M �mdp N from (m,n) to (m′, σ, n) with label
σ and probability x;

6 Later Act will be a set of strings output by a streaming transducer.
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– if in N there is a transition from n to n′ labelled σ ∈ Σ and a ∈ Act, then
for all m there is an edge from (m,σ, n) to (m,n′) labelled a;

– the initial distribution sends (m,n) to ιM (m) if n is the initial state of N ,
and to 0 otherwise.

Note. In case D is a DFA then M �mdpD (with the Act-labelling removed)
is, modulo identification, the Σ-labelled MC M �mc D.

Lemma 27. If s is a finite-state strategy then the MC (M�mdpN)[s] is, modulo
identification, the same as M �mc D for some DFA D.

An objective Φ for a game graph is a subset of plays. We consider two types
of objectives, reachability and safety objectives. Given a set X ⊂ V of nodes, the
reachability objective reach(X) requires that some vertex in X be visited, and
dually, the safety objective safe(X) requires that only vertices in X be visited.
Solving an MDP for objective Φ means finding a strategy s such that, amongst
all possible strategies, the probability in the chain G[s] of Φ is maximised. We
call this maximal probability the value of the MDP for objective Φ. The follow-
ing lemma is a slight variation on the standard problem of solving MDPs with
reachability objectives.

Lemma 28. There is a PTIME algorithm that computes the value (and strat-
egy) of an MDP whose objective is a boolean combination of reachability objec-
tives.

3.2 Proof of Theorem 14

From DFAs R and T and non-negative integer α we construct an MDP GR,T,α
and objectives reach(ObR) and safe(ObS) such that the following two quan-
tities are equal: 1) the maximum probability over all strategies of safe(ObS)
conditioned on reach(ObR); 2) the largest η ∈ [0, 1] for which there exists an
(η, α)-streaming transducer sending R to T . We now provide the construction
(in I), then show how to compute the value (in II), and finally prove that the
value is equal to the required conditional probability (in III).

I. Construction of MDP GR,T,α. The MDP is constructed in three steps:
Step 1. From the DFA R = (QR, Σ, δR, q0R, FR) construct the Σ-labelled

Markov chain UR := UΣ �mc R, as in Example 21. Its state set is Σ ×QR.
Step 2. From the DFA T = (QT , Σ, δT , q0T , FT ) and non-negative integer α

construct an NFA (without final states) Tα over alphabet Σ×Σ∗ that simulates
the possible repairs of the input string. It does this by storing the allowed number
of edit operations left.The non-determinism will corresponds to Decider’s choices
in the MDP. First we need some notation. Write best-str(q, q′, σ) for some
fixed string w (say the length-lexicographically least) amongst those for which
ed(w, σ) is minimal with the property that δT (q, w) = q′. Now, define Tα as
follows:
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– the states are QT × {⊥, 0, 1, · · · , α} (here ⊥ means we have failed to repair
the input string);

– the initial state is (q0T , α) (meaning initially there are α edit operations
available);

– on input (σ, σ) there is a transition from (q,⊥) to (δT (q, σ),⊥), (ie. once we
have failed to repair, just copy the input to the output);

– on input (σ,best-str(q, q′, σ)) there is a transition from (q, n) to (q′,m)
where

m = n− ed(best-str(q, q′, σ), σ)

if this quantity is non-negative, and otherwise m = ⊥.

Step 3. Define the Σ-labelled MDP GR,T,α as �mdp-product of the Markov
chain UR and NFA Tα.

Notation. Every node in Vrand is of the form (q, t, n) ∈ QUR × QT ×
{⊥, 0, 1, · · · , α}. Every node in Vdec is of the form (q, σ′, t, n) ∈ QUR×Σ×QT ×
{⊥, 0, 1, · · · , α}. The second component of the element q ∈ QUR := Σ × QR is
called the QR-component of (q, t, n) and of (q, σ′, t, n).

Objectives. We introduce two objectives. Let ObR be the set of states of
GR,T,α whose QR-component is in FR. Let ObS be the set of states of GR,T,α
such that if the QR-component is in FR then both t ∈ FT and n 6= ⊥. The two
objectives are reach(ObR) and safe(ObS).

II. Computing the Value of GR,T,α. Given R,T and α, the value η∗ of GR,T,α
is defined as the maximum, over all strategies s, of the conditional probability,

PrGR,T,α[s] (safe(ObS) | reach(ObR)) =
PrGR,T,α[s] (safe(ObS) ∩ reach(ObR))

PrGR,T,α[s] (reach(ObR))

Proposition 29. The value of the mdp GR,T,α is computable in PTIME and
can be realised by a memoryless strategy.

For the proof observe that the value of reach(ObR) is independent of the
strategy s chosen by the decider. This is so because s does not have any effect
on the QR-component of the state of GR,T,α. Thus the value of reach(ObR) can
be easily calculated (fix any memoryless strategy and apply Lemma 18). So, we
just need to find the value of the objective safe(ObS)∩ reach(ObR). By Lemma
28 this can be computed, and the required strategy is memoryless.

III. Existence of an Optimal Streaming Transducer. Fix R, T and α, and
let η∗ be the value of the MDP GR,T,α for the property safe(ObS) conditioned on
reach(ObR). In this section Proposition 31 immediately implies what we want,
namely: 1) there is an (η∗, α)-streaming transducer from R to T ; 2) there is no
(η, α)-streaming transducer from R to T with η > η∗.

Lemma 30. Let s be a finite-state strategy for GR,T,α and Trs the correspond-
ing streaming transducer. Then the probability in MC GR,T,α[s] of safe(ObS) ∩
reach(ObR) divided by the probability of reach(ObR) is equal to the probability
that a string in need of R-repair is 〈R, T 〉-repaired by Trs within α.
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Proof. By Lemma 27 GR,T,α[s] is a MC of the form UR �mc D for some DFA
D. Thus the probability of reach(ObR) in GR,T,α[s] is equal to the probability
in UR �mc D of reaching a state whose QR-component is in FR. Note that the
annotation map ρ preserves the property that a path reaches a state whose QR-
component is in FR. By Lemma 20 the latter is equal to the probability in UR
that a path reaches a state whose QR-component is in FR. By Example 21 this is
equal to the probability that that an infinite string is in need of repair. Similarly
it can be shown that the probability of safe(ObS) in GR,T,α[s] is equal to the
probability in that an infinite string is 〈R, T 〉-repairable by Trs within α; and
the same for the intersection. ut

Proposition 31. 1. From a memoryless strategy s in GR,T,α with probability
(of the conditional objective) η one can construct an (η, α)-streaming trans-
ducer from R to T .

2. From an (η, α)-streaming transducer Tr from R to T one can construct a
strategy sTr in GR,T,α with value ≥ η.

Proof. The first item is immediate from Lemma 30.
For the second, a transducer Tr gives rise to the following strategy sTr:

suppose ρ ∈ V ∗ is a play ending in (q, σ, t, n) ∈ Vdec where q is a state of UR
and t of Tα. Let in(ρ) be the input (ie. the letters that Randomizer has chosen)
and note that it ends in σ. The strategy sTr sends ρ to node (q, t′, n′) ∈ Vrand,
where t′ = δT (q0T ,Tr(in(ρ))) where δT is the transition function and q0T the
initial state of the DFA for T . Note that sTr is a finite-state strategy. So let Tr′

be the transducer associated with strategy sTr and apply Lemma 30. Then the
probability in GR,T,α[sTr] of safe(ObS)∩reach(ObR) divided by the probability
of reach(ObR) is equal to the probability that a string in need of R-repair is
〈R, T 〉-repaired by Tr′ within α. It is required to show that this latter probability
is at least η. For this it is sufficient to show that if a string is repaired by Tr
then it is repaired by Tr′. But this is the case because although both Tr and
Tr′ suggest the same next state for a given input string, say from (q, σ, t, n) to
(q, t′, n′), they possibly differ on the output string, say u and v. In particular,
ed(σ, u) ≥ ed(σ, v) := best-str(t, t′, σ) by the definition of GR,T,α. ut
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