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Synthesis of reactive systems
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Synthesis of CPS controllers

Main Question
How to deal with the continuous and discrete aspects of the
problem at the same time?

Approaches
1 Abstraction of the continuous world into the purely discrete

world + discrete synthesis (e.g., Nilsson et al., 2016)
2 Simplifying the continuous parts (Linear hybrid automata /

Timed automata) and using a specialized synthesis algorithm
for the resulting mixed discrete/continuous model (e.g.,
Benerecetti et al., 2013; Papusha et al., 2016)

3 “Continuization” of the discrete parts and using purely
continuous methods for controller computation
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Using a discrete abstraction
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Discrete synthesis for CPS – Example

Based on joint work with Ufuk Topcu, HSCC 2014
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Discrete synthesis for CPS – Example

Input/Output
Input:

(Sensed) positions of the robots

Delivery requests

Output:

Up/Left/Right/Down command
of the red robot

Pickup/drop actions of the red
robot

Based on joint work with Ufuk Topcu, HSCC 2014
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Discrete synthesis for CPS – Example

Guarantees
Whenever a button is pressed,
then the robot is eventually at
the lower left region and
performing a pick-up action,
while later being in the top right
region, performing a drop
action, without performing a
drop action in between.

No crashes between the robots

Based on joint work with Ufuk Topcu, HSCC 2014
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Discrete synthesis for CPS – Example

Assumptions
Obstacle can only move in
every second step

Obstacle can only move by one
cell per direction per step

x position of the robot is
updated according to its choice

y position of the robot is
updated according to its choice

No robot jumps further that one
cell are possible

Based on joint work with Ufuk Topcu, HSCC 2014
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Assumptions and guarantees in specifications

Specification shape(∧
Assumptions

)
→

(∧
Guarantees

)
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Reactive synthesis – Complexity vs. expressivity

CTL*

CTL LTL

GR(1)

GR(1) synthesis applications
On-chip bus arbiter (Bloem et al., 2007b,a; Godhal
et al., 2011)

High-level robot control (Kress-Gazit et al., 2009;
Raman et al., 2013; Jing et al., 2013)

Vehicle power management (Ozay et al., 2011a)

Camera network control (Ozay et al., 2011b)

...
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So is that the end of the story?

And everyone lived happily ever after...
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So is that the end of the story?

And everyone lived happily ever after...

...well, not quite. There is also:

Noise

Imprecise modelling of the environment

Incomplete information

Scalability

Robustness / Error-resilience

Quirks of the synthesis algorithm

...
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Controlling (Cyber-)physical systems
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Example for error-resilience
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Focus of this talk

A few answers to how we can deal with...
Noise

Imprecise modelling of the environment

Incomplete information

Scalability

Robustness / Error-resilience

Quirks of the synthesis algorithm

...
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Synthesizing error-resilient
implementations

Based on joint work with Ufuk Topcu, HSCC 2014
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Example for (discrete) robustness (revisited)

Assumptions
Obstacle can only move in
every second step

Obstacle can only move by one
cell per direction per step

x position of the robot is
updated according to its choice

y position of the robot is
updated according to its choice

No robot jumps further that one
cell are possible

Based on joint work with Ufuk Topcu, HSCC 2014
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Spectrum of robustness (in discrete synthesis)

Most robust

Least robust

k -resilient synthesis

Ratio games (Bloem et al., 2009)

→ n Assumption violations
→ m Guarantee violations allowed
→(Bloem et al., 2010)

This figure is certainly not complete and only lists some approaches.



16

k -Resilient synthesis (Def.: Huang et al., 2012)

time

≤ k
glitches

≥ b
steps

≤ k
glitches

≥ b
steps

≤ k
glitches

≥ b
steps

. . .

Algorithmic approach
Given a GR(1) specification ψ and k , we can encode the k -resilient
synthesis problem of ψ by translating ψ to a modified GR(1)
specification ψ′ and perform GR(1) synthesis for ψ′.
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The Reduction from GR(1) to GR(1) in a nutshell

A counter for k
We ask the system to be synthesized to output a counter that
says how many glitches can be tolerated in the near future.

If glitches stop occurring, then the system must eventually set
the counter back to k .

Effect
Quantification over b is abstracted by a liveness property

Idea can be implemented by altering the specification.
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Example: Robot patrolling
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Example: Robot patrolling
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Synthesizing cooperative
controllers

Based on joint work with Roderick Bloem and Robert Könighofer,
IROS 2015
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Demo
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Main problem

Main problem
How can we synthesize cooperative high-level robot
controllers?

Naive approaches to solving this problem
Require the system to satisfy the specification even if the
environment is naughty

Change the specification to prevent uncooperative behavior

Our approach
We modify the main generalized reactivity(1) synthesis
approach to compute only cooperative controllers.



21

Main problem

Main problem
How can we synthesize cooperative high-level robot
controllers?

Naive approaches to solving this problem
Require the system to satisfy the specification even if the
environment is naughty → assumptions are needed

Change the specification to prevent uncooperative behavior

Our approach
We modify the main generalized reactivity(1) synthesis
approach to compute only cooperative controllers.



21

Main problem

Main problem
How can we synthesize cooperative high-level robot
controllers?

Naive approaches to solving this problem
Require the system to satisfy the specification even if the
environment is naughty → assumptions are needed

Change the specification to prevent uncooperative behavior

Our approach
We modify the main generalized reactivity(1) synthesis
approach to compute only cooperative controllers.



21

Main problem

Main problem
How can we synthesize cooperative high-level robot
controllers?

Naive approaches to solving this problem
Require the system to satisfy the specification even if the
environment is naughty → assumptions are needed

Change the specification to prevent uncooperative behavior
→ defeats the purpose of synthesis

Our approach
We modify the main generalized reactivity(1) synthesis
approach to compute only cooperative controllers.



21

Main problem

Main problem
How can we synthesize cooperative high-level robot
controllers?

Naive approaches to solving this problem
Require the system to satisfy the specification even if the
environment is naughty → assumptions are needed

Change the specification to prevent uncooperative behavior
→ defeats the purpose of synthesis

Our approach
We modify the main generalized reactivity(1) synthesis
approach to compute only cooperative controllers.



22

Making GR(1) synthesis cooperative

Synthesis objective
All executions must be correct.

From every state of the synthesized controller, there must
always be an execution on which the assumptions are
satisfied.

Implementation: Safety
Prevent the system from issuing a next output that forces the
environment to subsequently violate its specification

Implementation: Liveness
Modify the GR(1) fixpoint computation
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Standard GR(1) fixpoint equation

νZ .
∧

j∈{1,...,n}

µY .
∨

i∈{1,...,m}

νX .EnfPre
(
(Z ′ ∧ ψg

j ) ∨ Y ′ ∨ (¬ψa
i ∧ X ′)

)



24

Cooperative GR(1) synthesis

νZ .
∧

j∈{1,...,n}

µY .
∨

i∈{1,...,m}

νX .EnfPre
(
(Z ′ ∧ ψg

j ) ∨ Y ′ ∨ (¬ψa
i ∧ X ′)

)
∧ µR .Reach

(
(ψ

g
j ∨ Y ′ ∨ R ′) ∧ X

)
∧

∧
k∈{1,...,m}

µR .Reach
(
(ψa

k ∨ R ′) ∧ Z
)
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Demo
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Optimal control in adversarial
environments

Based on joint work with Gangyuan Jing and Hadas
Kress-Gazit

(published at IROS 2013)
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Adding an optimization criterion

Basic idea
In addition to the specification, we introduce a cost function.

↑↓

Example due to Chatterjee and Henzinger (2006)
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Adding an optimization criterion

Specification parts
The door can be open or closed.

∀i ∈ {1, 2, 3, 4}: If button i is pressed, floor i is eventually
visited with the door open.

At every step, the current floor number is not increased or
decreased by more than one.

The current floor number can only be changed if the door is
closed.

The “door close” command can fail or succeed, while the
“open door” command always succeeds.

Optimization criterion / cost function
Every operation has a (fixed) cost.

We want to minimize the average cost per execution step.
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What is an optimal strategy?

Optimal strategy (mean-payoff)
Service requests for 1 step, then wait for 1 step, then

service requests for 1 step, then wait for 2 steps, then

service requests for 1 step, then wait for 3 steps, then

. . .

So what now?
We need to fix either:

specification

weigths/costs
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Example

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

Specification parts

Assumptions: Guarantees
GF(open1) G(¬open1 → X(¬r3)))
GF(open2) G(¬open2 → X(¬r5))) Fr7

GF(open3) G(¬open3 → X(¬r10)))
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Introducing “action cost”

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

Computing action cost along a path
Take the sum of costs until reaching the next goal



31

Introducing “action cost”

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

2 1 1 1 1 2

3

2 2 2 2

3

Computing action cost along a path
Take the sum of costs until reaching the next goal



31

Introducing “action cost”

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

2 1 1 1 1 2

3

2 2 2 2

3

Computing action cost along a path
Take the sum of costs until reaching the next goal



32

Characterizing waiting in strategies

Basic idea
Waiting in strategies can be detected by looking at the SCCs.

But what about repetitive tasks?
Here, we count SCCs up to the point of reaching the next goal.
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Conditions on the specification

Idea
If the specification has a set of goals for the system, we can
count the number of waiting cycles for reaching the respective
next goal.

After reaching the next goal, the counter resets.

It is the aim of the system to reach the next goal cheaply.

Using the idea for GR(1) specifications
Still singly-exponential complexity

Strategy shape is the same as for standard GR(1) synthesis:
positional-per-goal
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Combining action and waiting cost
Two-dimensional cost notion
From every state of a strategy, a strategy has a cost tuple that
describes the cost to reach the next goal.

r1 r7r2 r3 r4 r5 r6

r8

r9 r10 r11

r12

2 1 1 1 1 2

3

2 2 2 2

3

Example
Cost of path 1 from r1: (cw , ca) = (2, 8), cost of path 2: (cw , ca) = (1, 14)
Overall cost: depends on the preference
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Preference relations

Preference relations
We use a preference relation ≤P to choose which executions
the strategy should prefer (e.g., (1, 14) ≤P (2, 8)).

The value of a strategy from some state is the highest
combined cost (w.r.t. ≤P ) of all executions originating from the
state.

Using the idea for GR(1) specifications
For almost-linear preference relations, we can still compute optimal
strategies in exponential time. They track:

The current atomic proposition values

The “current” liveness assumption and liveness guarantee

Whether ∞ action cost can still be avoided
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Risk-Averse Control of
Markov Decision Processes
with ω-regular Objectives

Based on joint work with Salar Moarref and Ufuk Topcu
(published at CDC 2016)
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Basic problem setup

Basic Problem
We want to control a Markov decision process (MDP) such
that an ω-regular specification is satisfied...

...but we want to do this in MDPs in which all policies have a
probability of 0 for satisfying the specification.

a 0.6

0.3

0.1
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Example problem
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So how can we control the system?

Idea
We compute a controller that maximizes the probability to reach
the next goal.

From every goal (or initially), A p-risk averse controller reaches the
next goal with probability at least p.

But what is the next goal?
When working with general ω-regular specifications, this is not so
easy to tell!
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Deterministic Parity Automata
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Acceptance
A deterministic parity automaton accepts all words that have a run
on which the highest color occurring infinitely often is even.
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Deterministic Parity Automata

1 1 2 3 4¬a
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Acceptance
A deterministic parity automaton accepts all words that have a run
on which the highest color occurring infinitely often is even.

Example (3)

~c = 1 2 3 4 1 2 . . .

w = a a a a a a . . .



41

Connecting Deterministic Parity Automata and MDP
Control

Basic idea
We let the controller always tell the current goal color and when it
just reached a goal.

The controller may always increase the goal color, but decrease it
only finitely a fixed number of times.

Finding p-risk averse policies
For every p ∈ [0, . . . , 1], a p-risk averse control policy has a
finite number of states

Optimal strategies can be computed by solving a series of
optimal reachability policy computations in MDPs.
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Estimator-based synthesis

Based on joint work with Ufuk Topcu, HSCC 2015
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Example application: Distance keeping assistant

d

Observable: Speed of the follower car
Noisily Measured: Distance between cars
Unobserved: Speed of the leader car
Controlled: Acceleration (follower)
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Synthesis – complexity vs. expressivity (incomplete inf.)

CTL*

CTL LTL

GR(1)
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Synthesis with estimators (1/2)

Central question:
How to retain the

singly-exponential complexity of
GR(1) synthesis

under incomplete information?
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Synthesis with estimators (2/2)

Estimator

Controller

APinp

APestAPact APhid
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Decoupling estimator computation from synthesis

Main ideas
We decouple the estimation of the physical values and
reactive synthesis using an estimator specification as
glue.

We modify the controller specification to only talk about
observable variables.

Example specification parts

Estimator specification Controller Specification
G(minDistance ≤ distance) G(minDistance ≥ 5)
G(maxDistance ≥ distance)
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Main correctness proposition

We can soundly reduce the synthesis problem for ϕ under
incomplete information to one over ϕ′ over complete information if

(ϕ′ ∧ G ρe ∧ G ρs) → ϕ

holds.

Modified System
Specification



48

Main correctness proposition

We can soundly reduce the synthesis problem for ϕ under
incomplete information to one over ϕ′ over complete information if

(ϕ′ ∧ G ρe ∧ G ρs) → ϕ

holds.

Modified System
Specification

Environment
Assumptions



48

Main correctness proposition

We can soundly reduce the synthesis problem for ϕ under
incomplete information to one over ϕ′ over complete information if

(ϕ′ ∧ G ρe ∧ G ρs) → ϕ

holds.

Modified System
Specification

Environment
Assumptions

Estimator
Specification



48

Main correctness proposition

We can soundly reduce the synthesis problem for ϕ under
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(ϕ′ ∧ G ρe ∧ G ρs) → ϕ

holds.
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Environment
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Estimator
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Scalable estimator computation

Problem
In general, estimator computation is still a doubly exponential
problem
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Scalable estimator computation

Our solution
We only consider positional estimators. These may only base
their next estimates on:

the last sensor values and the last estimates

the current sensor values

the possible evolutions of the environment

Properties of our approach
fixed size of the estimators

no “strategic planning” possible by the estimators

unique optimal estimators exist for most estimate preference
relations
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Example: Discretized car following controller (1)

Properties
distance ∈ {0, . . . , 84, 85}

speedLeader ∈ {0, . . . , 15}

speedFollower ∈ {0, . . . , 15}

accelerationLeader ∈ {−2,−1, 0, 1, 2}

accelerationFollower ∈ {−2,−1, 0, 1, 2}

Noisy distance update

Approximate (±2) distance measurement

. . .

Specification parts
The distance must always be at least 5.

G(distance < 85 ∨ speedFollower = 15)
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Example: Discretized car following controller (2)

. . .



84
14
4
13
15
83
85





78
15
0
11
12



Meaning of the
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Example: Discretized car following controller (2)

. . .
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Example: Discretized car following controller (3)

. . .
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


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15
2
2
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
. . .

Meaning of the
encoding :
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
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Computing positional estimators

1. Compute the reachable states of any estimator

R = µX .({x0} ∪ {x′ ⊆ APobs ∪ APhid ∪ APest | ∃x ∈ X .

(x \ APest , x′ \ APest) ∈ ρe , (x, x′) ∈ ρs})

2. Compute which estimates are admissible

ρu ={(x, x′) ∈ (2APobs∪APest )2 | ∀y, y′ ⊆ 2APhid :

((x ∪ y) ∈ R ∧ ((x \ APest ∪ y),

(x′ \ APest ∪ y′))) ∈ ρe → ((x ∪ y), (x′ ∪ y′)) ∈ ρs}.

3. Restriction to optimal estimates

ρ̂u = {(x, x′) ∈ ρu : x′|APest = min{x′′|APest : (x, x
′′) ∈ ρu,

= {x′ \ APest = x′′ \ APest }}
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Discretized car following controller (cont’d)

Computation times with slugs (BDD-based)
Basic scenario: 22+28 minutes

Cruise mode scenario: 22+460 minutes (6 realizability
checks)

Without estimator-based synthesis

Belief space: 216·86 states – beyond tractability
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Conclusion
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“Spicing up CPS controller synthesis”

In this talk...
...we discussed a few approaches to make the concept of reactive
synthesis more applicable to CPS controller computation.

But can they be combined?
Apart from the error-resilient synthesis part, they all require
modifications of the synthesis process. → So no!

Ok, so what now?
We will need to research methods to combine the considerations
presented in this talk in a larger framework that still allows for
scalable synthesis!
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