Gabriel Juhás

Date: 17:00, Wednesday, February 21, 2018
Speaker: Gabriel Juhás
Venue: Mondi 2, IST Austria

In this talk we present token flow based synthesis of Petri nets from labelled prime event structures (LPES). For this purpose we use unfolding semantics based on token flows.
First, given a finite LPES, it is shown how to synthesize a Petri net with acyclic behavior, such that the unfolding of the synthesized net preserves common prefixes and concurrency of runs of the LPES. The partial language of this unfolding is the minimal partial language of an unfolding of a Petri net, which includes the partial language of LPES. This result extend the class of non-sequential behaviour,for which Petri nets can be synthesized, because in comparison to a partial language, an LPES enables to define which common history of runs should be preserved in the synthesized net.
Second, given an infinite LPES represented by some finite prefix equipped with a cutting context and cut-off events it is shown how to synthesize a bounded Petri net, such that the unfolding of the synthesized net preserves common prefixes and concurrency of runs of the LPES. The partial language of this unfolding is the minimal partial language of an unfolding of a Petri net, which includes the partial language of LPES. This result extends the class of non-sequential behaviour, for which Petri nets can be synthesized, because finite representations of infinite LPES by a finite prefix equipped with a cutting context and cut-off events are more expressive than finite representations of infinite partial languages by terms.

Posted in RiSE Seminar