Alexandra Silva

Date: 17:00, Monday, February 26, 2018
Speaker: Alexandra Silva
Venue: TU Wien

Abstract:

Automata learning is a technique that has successfully been applied in verification, with the automaton type
varying depending on the application domain. Adaptations of automata learning algorithms for increasingly
complex types of automata have to be developed from scratch because there was no abstract theory offering
guidelines. This makes it hard to devise such algorithms, and it obscures their correctness proofs.
We introduce a simple category-theoretic formalism that provides an appropriately abstract foundation for
studying automata learning. Furthermore, our framework establishes formal relations between algorithms for
learning, testing, and minimization. We illustrate its generality with two examples: deterministic and weighted
automata.
Posted in RiSE Seminar